Background: Mycoplasma pneumoniae has previously been characterized as a micro-organism that is genetically highly stable. In spite of this genetic stability, homologous DNA recombination has been hypothesized to lie at the basis of antigenic variation of the major surface protein, P1, of M. pneumoniae. In order to identify the proteins that may be involved in homologous DNA recombination in M. pneumoniae, we set out to characterize the MPN229 open reading frame (ORF), which bears sequence similarity to the gene encoding the single-stranded DNA-binding (SSB) protein of other micro-organisms.
Results: The MPN229 ORF has the capacity to encode a 166-amino acid protein with a calculated molecular mass of 18.4 kDa. The amino acid sequence of this protein (Mpn SSB) is most closely related to that of the protein predicted to be encoded by the MG091 gene from Mycoplasma genitalium (61% identity). The MPN229 ORF was cloned, and different versions of Mpn SSB were expressed in E. coli and purified to > 95% homogeneity. The purified protein was found to exist primarily as a homo-tetramer in solution, and to strongly and selectively bind single-stranded DNA (ssDNA) in a divalent cation- and DNA substrate sequence-independent manner. Mpn SSB was found to bind with a higher affinity to ssDNA substrates larger than 20 nucleotides than to smaller substrates. In addition, the protein strongly stimulated E. coli Recombinase A (RecA)-promoted DNA strand exchange, which indicated that Mpn SSB may play an important role in DNA recombination processes in M. pneumoniae.
Conclusion: The M. pneumoniae MPN229 gene encodes a protein, Mpn SSB, which selectively and efficiently binds ssDNA, and stimulates E. coli RecA-promoted homologous DNA recombination. Consequently, the Mpn SSB protein may play a crucial role in DNA recombinatorial pathways in M. pneumoniae. The results from this study will pave the way for unraveling these pathways and assess their role in antigenic variation of M. pneumoniae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572620 | PMC |
http://dx.doi.org/10.1186/1471-2180-8-167 | DOI Listing |
Ann Hematol
December 2019
Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
Philadelphia negative (Ph-neg) myeloproliferative neoplasms (MPN) are a heterogenous group of clonal stem cell disorders. Approved treatment options include hydroxyurea, anagrelide, and ruxolitinib, which are not curative. The concept of synthetic lethality may become an additional therapeutic strategy in these diseases.
View Article and Find Full Text PDFBMC Microbiol
October 2008
Erasmus MC, Laboratory of Pediatrics, Pediatric Infectious Diseases, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
Background: Mycoplasma pneumoniae has previously been characterized as a micro-organism that is genetically highly stable. In spite of this genetic stability, homologous DNA recombination has been hypothesized to lie at the basis of antigenic variation of the major surface protein, P1, of M. pneumoniae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!