Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by arteriovenous malformations (AVMs) ranging from telangiectases to larger AVMs. Mutations in two genes cause HHT; ENG (HHT1) and ACVRL1 (HHT2). Although the hallmark for clinical diagnosis is the presence of telangiectases, there are few publications reporting the relative distribution and frequency of these features between HHT1 and HHT2. Here, the results of such analysis of telangiectases in 268 patients with HHT1 and 130 patients with HHT2 are described. Localization of the telangiectases is reported, and patients were clustered by age to estimate the site prevalence for different age categories. We show that telangiectases of the nasal mucosa are present at a higher prevalence and start to appear earlier in life than those of the oral mucosa or dermal sites in patients with either HHT1 or HHT2. Oral and nasal mucosal telangiectases are present earlier in life in patients with HHT1 compared to patients with HHT2, whereas dermal lesions are more frequent and appear earlier in life in patients with HHT2. In patients with either HHT1 or HHT2, the number of sites affected increases with age. In patients with HHT1, more women than men had skin telangiectases, particularly on the face. These results confirm that the frequency of AVMs differ between patients with HHT1 and HHT2, and that these differences can be detected on physical examination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.32243 | DOI Listing |
Diagnostics (Basel)
December 2024
Pneumology Department, General University Hospital of Valencia, 46014 Valencia, Spain.
: Angiogenesis is involved in the pathogenesis of hereditary hemorrhagic telangiectasia (HHT). VEGF, ANG2, TGFβ1, and ENG are the most studied angiogenic factors, but their clinical significance in blood samples is still not completely defined. The genetic study of HHT mutations is the test of choice for diagnosing the disease, but this route is expensive, and the causative mutation is not found in up to 10% of cases.
View Article and Find Full Text PDFInt J Stem Cells
November 2024
Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea.
Biomedicines
July 2024
Center for Cerebrovascular Research, University of California, San Francisco, CA 94143, USA.
Endoglin () mutation causes type 1 hereditary hemorrhagic telangiectasia (HHT1). HHT1 patients have arteriovenous malformations (AVMs) in multiple organs, including the brain. In mice, deletion induced by R26RCreER or SM22αCre leads to AVM development in the brain and other organs.
View Article and Find Full Text PDFThromb Res
September 2024
Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Introduction: Hereditary Hemorrhagic Telangiectasia (HHT) is charactered by telangiectasia and arteriovenous malformations (AVMs). Recurrent visceral and mucocutaneous bleeding is frequently reported among HHT patients, while data on the prevalence of thrombosis remains limited. This study aims to describe the clinical manifestations and molecular biological characteristics of HHT patients.
View Article and Find Full Text PDFGenes (Basel)
February 2024
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
Hereditary hemorrhagic telangiectasia (HHT), also called Rendu-Osler syndrome, is a group of rare genetic diseases characterized by autosomal dominance, multisystemic vascular dysplasia, and age-related penetrance. This includes arteriovenous malformations (AVMs) in the skin, brain, lung, liver, and mucous membranes. The correlations between the phenotype and genotype for HHT are not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!