Brain-derived neurotrophic factor (BDNF) is a potent survival and developmental factor that is regulated by cyclic AMP-response element binding protein (CREB) and has a protective effect against retinal ganglion cell (RGC) death. However, the effect of BDNF on the optic nerve axonal degeneration remains to be examined. In this study, we show that intravitreal injection of tumor necrosis factor (TNF)-alpha induces transient increases in phosphorylated-CREB (p-CREB) and BDNF expression in the optic nerve. Administration of exogenous BDNF further increased the p-CREB and endogenous BDNF level and exerted a neuroprotective effect against TNF-alpha-induced axonal loss. The increases in BDNF mRNA and protein induced by TNF-alpha were inhibited significantly by a CRE decoy oligonucleotide. The protective effect of exogenous BDNF on axons was also inhibited by the CRE decoy oligonucleotide. These results suggest that the protective effect of exogenous BDNF may be associated with increases in CREB phosphorylation and endogenous BDNF in the optic nerve.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-008-0440-9DOI Listing

Publication Analysis

Top Keywords

optic nerve
16
exogenous bdnf
12
bdnf
9
brain-derived neurotrophic
8
neurotrophic factor
8
creb phosphorylation
8
tumor necrosis
8
bdnf optic
8
endogenous bdnf
8
inhibited cre
8

Similar Publications

Background: Orbital bullet injuries resulting from high-velocity trauma pose significant clinical challenges due to the potential for severe ocular and systemic complications. This meta-analysis consolidates the existing body of knowledge on direct orbital bullet injuries with respect to clinical outcomes, management strategies, and long-term effects.

Methods: The literature search was conducted by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, using databases such as PubMed and Scopus.

View Article and Find Full Text PDF

Background: Giant cell arteritis (GCA) is the most common vasculitis in patients older than 50 years and is considered a "do not miss" diagnosis. However, it remains a diagnostic challenge given overlapping clinical syndromes such as non-arteritic anterior ischemic optic neuropathy (NAION) and poorly explored imaging findings.

Materials And Methods: In this retrospective study between the time period of January 2013 and December 2021, a total of 13 consecutive patients with a pathological diagnosis of GCA and 8 patients with clinical diagnosis of NAION were isolated.

View Article and Find Full Text PDF

Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.

View Article and Find Full Text PDF

Background: Optic nerve sheath diameter (ONSD) is a promising noninvasive parameter for intracranial pressure (ICP) assessment. However, in the setting of aneurysmal subarachnoid hemorrhage (aSAH), several previous studies have reported no association between ultrasonically measured ONSD and ICP. In this study, we evaluate ONSD in patients with aSAH using a novel method of automated real-time ultrasonographic measurements and explore whether factors such as having undergone surgery affects its association to ICP.

View Article and Find Full Text PDF

Purpose: To evaluate the refractive differences among school-aged children with macular or peripapillary fundus tessellation (FT) distribution patterns, using fundus tessellation density (FTD) quantified by deep learning (DL) technology.

Methods: The cross-sectional study included 1942 school children aged six to 15 years, undergoing ocular biometric parameters, cycloplegic refraction, and fundus photography. FTD was quantified for both the macular (6 mm) and peripapillary (4 mm) regions, using DL-based image processing applied to 45° color fundus photographs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!