Bismuth-doped fiber lasers operating in the range 1300-1470 nm have been demonstrated for the first time, to our knowledge. It has been shown that Bi-doped alumina-free phosphogermanosilicate fibers reveal optical gain in a wavelength range of 1240-1485 nm with pumping at 1205, 1230, or 808 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.33.002227DOI Listing

Publication Analysis

Top Keywords

fiber lasers
8
bi-doped fiber
4
lasers amplifiers
4
amplifiers spectral
4
spectral region
4
region 1300-1470
4
1300-1470 bismuth-doped
4
bismuth-doped fiber
4
lasers operating
4
operating range
4

Similar Publications

Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array.

Light Sci Appl

January 2025

State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.

View Article and Find Full Text PDF

Exploring Retinal Conditions Through Blue Light Reflectance Imaging.

Prog Retin Eye Res

January 2025

Orbit Ophthalmo Learning, Rua Rio de São Pedro, no 256 Graça. Salvador BA, CEP 40.150-350, Brazil.

Blue light reflectance (BLR) imaging offers a non-invasive, cost-effective method for evaluating retinal structures by analyzing the reflectance and absorption characteristics of the inner retinal layers. By leveraging blue light's interaction with retinal tissues, BLR enhances visualization beyond the retinal nerve fiber layer, improving detection of structures such as the outer plexiform layer and macular pigment. Its diagnostic utility has been demonstrated in distinct retinal conditions, including hyperreflectance in early macular telangiectasia, hyporeflectance in non-perfused areas indicative of ischemia, identification of pseudodrusen patterns (notably the ribbon type), and detection of peripheral retinal tears and degenerative retinoschisis in eyes with reduced retinal pigment epithelial pigmentation.

View Article and Find Full Text PDF

Fibrin film on clots is increased by haematocrit but reduced by inflammation: implications for platelets and fibrinolysis.

J Thromb Haemost

January 2025

Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.

Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.

View Article and Find Full Text PDF

Purpose: To describe two cases of pediatric patients with Coats disease who developed nerve fiber layer (NFL) schisis.

Methods: Observational case series.

Results: Two male pediatric patients, ages 2 and 14, who were being treated for Coats disease were found to have NFL schisis on optical coherence tomography.

View Article and Find Full Text PDF
Article Synopsis
  • PFAS are stable yet harmful chemicals, vital for modern technologies but persistent pollutants affecting health.
  • The study focuses on completely breaking down GenX, a PFAS replacement, using electrocatalysis in LiOH solutions with specialized nanocatalysts.
  • The approach is environmentally friendly, utilizing nonprecious materials and without the need for auxiliary chemicals, offering a potential solution to mitigate PFAS pollution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!