Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier.

Appl Opt

Electrónica e Informática, Instituto Nacional de Tecnología Industrial, P.O. Box B1650WAB, B1650KNA San Martín, Argentina.

Published: October 2008

We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.47.005201DOI Listing

Publication Analysis

Top Keywords

singular scalar
8
scalar light
8
light fields
8
two-dimensional directional
8
directional wavelet
8
wavelet transform
8
spatial carrier
8
phase retrieval
4
retrieval singular
4
fields two-dimensional
4

Similar Publications

Identification of important residues in biochemical complexes is often a crucial step for many problems in molecular biology and biochemistry. A method is proposed to identify hotspots in biomolecular complexes based on a new metric, derived from networks representing molecular subunits (residues, bridging solvent molecules, ligands etc.) connected by interactions.

View Article and Find Full Text PDF

A Learned-SVD Approach to the Electromagnetic Inverse Source Problem.

Sensors (Basel)

July 2024

Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA), Via Diocleziano 328, I 80124 Napoli, Italy.

We propose an artificial intelligence approach based on deep neural networks to tackle a canonical 2D scalar inverse source problem. The learned singular value decomposition (L-SVD) based on hybrid autoencoding is considered. We compare the reconstruction performance of L-SVD to the Truncated SVD (TSVD) regularized inversion, which is a canonical regularization scheme, to solve an ill-posed linear inverse problem.

View Article and Find Full Text PDF

As a vector version of scalar Bessel beams, Poincaré-Bessel beams (PBBs) have attracted a great deal of attention due to their non-diffracting and self-healing properties as well as the presence of polarization singularities. Previous studies of PBBs have focused on cases that consist of a superposition of Bessel beams in orthogonal circular polarization states; here, we present a theoretical and experimental study of PBBs for which the polarization states are taken to be linear, which we call a linear PBB. Using a mode transformation of a full Poincaré beam constructed from linear polarization states, we observe the linear PBB as providing an in-principle infinite number of covers of the Poincaré sphere in the transverse plane and with an infinite number of C-points with positive and negative topological indices.

View Article and Find Full Text PDF

Current treatments of cardiac arrhythmias like ventricular fibrillation involve the application of a high-energy electric shock, that induces significant electrical currents in the myocardium and therefore involves severe side effects like possible tissue damage and post-traumatic stress. Using numerical simulations on four different models of 2D excitable media, this study demonstrates that low energy pulses applied shortly after local minima in the mean value of the transmembrane potential provide high success rates. We evaluate the performance of this approach for ten initial conditions of each model, ten spatially different stimuli, and different shock amplitudes.

View Article and Find Full Text PDF

Scalar and Tensor Charmonium Resonances in Coupled-Channel Scattering from Lattice QCD.

Phys Rev Lett

June 2024

Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA.

We determine J^{PC}=0^{++} and 2^{++} hadron-hadron scattering amplitudes in the charmonium energy region up to 4100 MeV using lattice QCD, a first-principles approach to QCD. Working at m_{π}≈391  MeV, more than 200 finite-volume energy levels are computed and these are used in extensions of the Lüscher formalism to determine infinite-volume coupled-channel scattering amplitudes. We find that this energy region contains a single χ_{c0} and a single χ_{c2} resonance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!