Vesicular stomatitis virus (VSV) is currently being studied as a candidate oncolytic virus for tumor therapies due to its potent tumoricidal activity. Previous studies have demonstrated that VSV selectively infects tumor cells due to defects in their antiviral pathways. These defects make them more susceptible to VSV-induced killing than normal cells. However, some cancer cells display differential sensitivity to VSV. Specifically, LNCaP prostate cancer cells are sensitive to infection with VSV, while PC3 prostate cancer cells are relatively resistant to VSV. This suggests that tumor cells vary in the extent to which they develop defects in antiviral pathways and, thus, permit virus replication. The goal of these studies was to identify the step(s) of the viral replication cycle that is inhibited in PC3 cells. Results showed that although attachment of VSV was not significantly different among cell types, penetration was delayed by 10 to 30 min in PC3 cells relative to LNCaP cells. Primary transcription was delayed by 6 to 8 h in PC3 cells relative to LNCaP cells. Similarly, both secondary transcription and viral protein synthesis rates were delayed by about 6 to 8 h. The progressively increasing delay suggests that more than one step is affected in PC3 cells. Analysis of cellular gene expression showed that in contrast to LNCaP cells, PC3 cells constitutively expressed numerous antiviral gene products, which may enhance their resistance to VSV. These data indicate that the use of VSV for oncolytic virus therapy for prostate tumors may require prescreening of tumors for their level of susceptibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593309 | PMC |
http://dx.doi.org/10.1128/JVI.01508-08 | DOI Listing |
BMC Plant Biol
January 2025
Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
Tribulus terrestris L. from the family of Zygophyllaceae, which is rich in saponin compounds, especially diosgenin, has various biological properties, such as anti-inflammation, anti-Alzheimer, anti-obesity, anti-diabetes, anti-leukemia, and anti-cancer activities, due to these compounds. This research aimed to study the diversity of agro-morphological and phytochemical traits and anti-proliferative activity against human prostate cancer cells (PC3) of T.
View Article and Find Full Text PDFEur J Surg Oncol
December 2024
Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Aartselaar 103, 1090, Brussels, Belgium.
Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.
View Article and Find Full Text PDFHeliyon
November 2024
Institute of Cell Biology and Biophysics, Department of Cell Biology, Leibniz University Hannover, 30419, Hannover, Germany.
Fungal specialized metabolites are known for their potent biological activities, among which tropolone sesquiterpenoids (TS) stand out for their diverse bioactivities. Here, we report cytotoxic and proliferation inhibitory effects of the recently discovered TS compounds 4-hydroxyxenovulene B and 4-dihydroxy norpycnidione, and the structurally related 4-hydroxy norxenovulene B and xenovulene B. Inhibition of metabolic activity after TS treatment was observed in Jurkat, PC-3 and FAIK3-5 cells, whereas MDA-MB-231 cells were unresponsive to treatment.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Medical Cell Biophysics, TechMed Center, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
J Org Chem
December 2024
Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!