Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes.

Cardiovasc Res

Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, AZ 1105 Amsterdam, The Netherlands.

Published: January 2009

Aims: Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes is unresolved. We studied whether Ca(i)(2+) modulates sodium channels in ventricular myocytes at Ca(i)(2+) concentrations ([Ca(i)(2+)]) present during the cardiac AP (0-500 nM), and how this modulation affects sodium channel properties in heart failure (HF), a condition in which Ca(i)(2+) homeostasis is disturbed.

Methods And Results: Sodium current (I(Na)) and maximal AP upstroke velocity (dV/dt(max)), a measure of I(Na), were studied at 20 and 37 degrees C, respectively, in freshly isolated left ventricular myocytes of control and HF rabbits, using whole-cell patch-clamp methodology. [Ca(i)(2+)] was varied using different pipette solutions, the Ca(i)(2+) buffer BAPTA, and caffeine administration. Elevated [Ca(i)(2+)] reduced I(Na) density and dV/dt(max), but caused no I(Na) gating changes. Reductions in I(Na) density occurred simultaneously with increase in [Ca(i)(2+)], suggesting that these effects were due to permeation block. Accordingly, unitary sodium current amplitudes were reduced at higher [Ca(i)(2+)]. While I(Na) density and gating at fixed [Ca(i)(2+)] were not different between HF and control, reductions in dV/dt(max) upon increases in stimulation rate were larger in HF than in control; these differences were abolished by BAPTA.

Conclusion: Ca(i)(2+) exerts acute modulation of I(Na) density in ventricular myocytes, but does not modify I(Na) gating. These effects, occurring rapidly and in the [Ca(i)(2+)] range observed physiologically, may contribute to beat-to-beat regulation of cardiac excitability in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvn274DOI Listing

Publication Analysis

Top Keywords

ventricular myocytes
20
sodium channels
16
ina density
16
channels ventricular
12
intracellular calcium
8
voltage-gated sodium
8
cai2+ modulates
8
modulates sodium
8
sodium current
8
ina
8

Similar Publications

Aim: Comparative assessment of structural changes in cardiomyocyte mitochondria of the right atrial appendage and the mitochondrial respiratory function in peripheral blood leukocytes in a cohort of patients after acute decompensated heart failure (ADHF) and with stable chronic heart failure of ischemic etiology with reduced ejection fraction (CHFrEF) or moderately reduced ejection fraction (CHFmrEF) of the left ventricle.

Material And Methods: The study analyzed 40 micrographs of right atrial appendage cardiomyocytes obtained from 12 patients with CHFrEF and CHFmrEF. The study protocol was registered on ClinicalTrials.

View Article and Find Full Text PDF

Binding of to dystrophin impairs the membrane trafficking of Nav1.5 protein and increases ventricular arrhythmia susceptibility.

Elife

January 2025

Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.

Dystrophin is a critical interacting protein of Nav1.5 that determines its membrane anchoring in cardiomyocytes. Long noncoding RNAs (lncRNAs) are involved in the regulation of cardiac ion channels, while their influence on sodium channels remains unexplored.

View Article and Find Full Text PDF

Altered Protein Kinase A-Dependent Phosphorylation of Cav1.2 in Left Ventricular Myocardium from Haploinsufficient Rat Hearts.

Int J Mol Sci

December 2024

Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany.

encodes the α1c subunit of the L-type Ca channel, Cav1.2. Ventricular myocytes from haploinsufficient () rats exhibited reduced expression of Cav1.

View Article and Find Full Text PDF

Alleviating the Effects of Short QT Syndrome Type 3 by Allele-Specific Suppression of the Mutant Allele.

Int J Mol Sci

December 2024

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

Short QT syndrome type 3 (SQTS3 or SQT3), which is associated with life-threatening cardiac arrhythmias, is caused by heterozygous gain-of-function mutations in the gene. This gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac inward rectifier potassium current (I). These gain-of-function mutations either increase the amplitude of I or attenuate its rectification.

View Article and Find Full Text PDF

MicroRNA (miR: small noncoding RNA)-150 is evolutionarily conserved and is downregulated in patients with diverse forms of heart failure (HF) and in multiple mouse models of HF. Moreover, miR-150 is markedly correlated with the outcome of patients with HF. We previously reported that systemic or cardiomyocyte-derived miR-150 in mice elicited myocardial protection through the inhibition of cardiomyocyte death, without affecting neovascularization and T cell infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!