Inducible nitric oxide synthase (iNOS) inhibition was recently shown to exert no effect on allergen challenge in human asthma, raising serious concerns about the role of the protein in the disease. The present study investigated the role of iNOS in ovalbumin-induced eosinophilia from the perspective of its relationship with poly(ADP-ribose) polymerase-1 (PARP-1) and oxidative DNA damage. A mouse model of ovalbumin-induced eosinophilia was used to conduct the studies. iNOS-associated protein nitration and tissue damage were partially responsible for allergen-induced eosinophilia. iNOS expression was required for oxidative DNA damage and PARP-1 activation upon allergen challenge. PARP-1 was required for iNOS expression and protein nitration, and this requirement was connected to nuclear factor-kappaB. PARP-1 was an important substrate for iNOS-associated by-products after ovalbumin-challenge. PARP-1 nitration blocked its poly(ADP-ribosyl)ation activity. Interleukin-5 re-establishment in ovalbumin-exposed PARP-1(-/-) mice reversed eosinophilia and partial mucus production without a reversal of iNOS expression, concomitant protein nitration or associated DNA damage. The present results demonstrate a reciprocal relationship between inducible nitric oxide synthase and poly(ADP-ribose) polymerase-1 and suggest that expression of inducible nitric oxide synthase may be dispensable for eosinophilia after interleukin-5 production. Inducible nitric oxide synthase may be required for oxidative DNA damage and full manifestation of mucus production. Such dispensability may explain, in part, the reported ineffectiveness of inducible nitric oxide synthase inhibition in preventing allergen-induced inflammation in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1183/09031936.00089008 | DOI Listing |
Int Immunopharmacol
January 2025
Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:
Purpose: The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis.
Method: We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury.
Int Immunopharmacol
January 2025
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589 Saudi Arabia. Electronic address:
This study aimed to explore a nanogel formulation containing acemannan as a carrier for the treatment of psoriasis-like skin inflammation. Several acemannan concentrations, such as F1 (2.5 %) and F2 (5 %), were used to prepare the nanogel formulation by homogenization.
View Article and Find Full Text PDFJ Nat Prod
January 2025
School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, People's Republic of China.
Ten new resin glycosides, controlins I-X (-), were isolated from the seeds of . Their structures were established by spectroscopic analysis as well as by chemical means. Compounds were identified as glycosidic acid methyl esters, considered as artifacts generated via transesterification with MeOH from natural resin glycosides.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China. Electronic address:
Chicken surfactant protein A1 (cSP-A1) is a soluble C-type lectin found primarily in chicken lungs. Its function and other potential bioactivities are unclear. This study aimed to express, purify, and identify recombinant cSP-A1 (RcSP-A1), investigate its effects on chicken macrophage HD11 cells, and evaluate its ability to regulate the LPS-induced inflammatory response.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!