Neural correlates of economic game playing.

Philos Trans R Soc Lond B Biol Sci

Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1440, USA.

Published: December 2008

The theory of games provides a mathematical formalization of strategic choices, which have been studied in both economics and neuroscience, and more recently has become the focus of neuroeconomics experiments with human and non-human actors. This paper reviews the results from a number of game experiments that establish a unitary system for forming subjective expected utility maps in the brain, and acting on these maps to produce choices. Social situations require the brain to build an understanding of the other person using neuronal mechanisms that share affective and intentional mental states. These systems allow subjects to better predict other players' choices, and allow them to modify their subjective utility maps to value pro-social strategies. New results for a trust game are presented, which show that the trust relationship includes systems common to both trusting and trustworthy behaviour, but they also show that the relative temporal positions of first and second players require computations unique to that role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581786PMC
http://dx.doi.org/10.1098/rstb.2008.0165DOI Listing

Publication Analysis

Top Keywords

utility maps
8
neural correlates
4
correlates economic
4
economic game
4
game playing
4
playing theory
4
theory games
4
games mathematical
4
mathematical formalization
4
formalization strategic
4

Similar Publications

Typhoon localization detection algorithm based on TGE-YOLO.

Sci Rep

January 2025

College of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China.

To address the problems of complex cloud features in satellite cloud maps, inaccurate typhoon localization, and poor target detection accuracy, this paper proposes a new typhoon localization algorithm, named TGE-YOLO. It is based on the YOLOv8n model with excellent high-low feature fusion capability and innovatively achieves the organic combination of feature fusion, computational efficiency, and localization accuracy. Firstly, the TFAM_Concat module is creatively designed in the neck network, which comprehensively utilizes the detailed information of shallow features and the semantic information of deeper features, enhancing the fusion ability of features at each layer.

View Article and Find Full Text PDF

A dual-domain network with division residual connection and feature fusion for CBCT scatter correction.

Phys Med Biol

January 2025

School of Biomedical Engineering, ShanghaiTech University, No. 1 Zhongke Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.

Objective: This study aims to propose a dual-domain network that not only reduces scatter artifacts but also retains structure details in CBCT.

Approach: The proposed network comprises a projection-domain sub-network and an image-domain sub-network. The projection-domain sub-network utilizes a division residual network to amplify the difference between scatter signals and imaging signals, facilitating the learning of scatter signals.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

Transient shear wave elastometry using a portable magnetic resonance sensor.

Magn Reson Med

January 2025

MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.

Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.

View Article and Find Full Text PDF

Adaptiveness is an important feature for biological creatures to survive and interact with variable environments. Mechanically adaptive polymers (MAPs), which have been developed recently inspired by this adaptive nature, can regulate their mechanical properties in response to external stimuli or environmental changes. Specifically, MAPs based on dynamic chemical bonds have been synthesized and reported as an emerging material because of the intrinsic self-adaptability, outstanding mechanical properties and durable applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!