The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded systems of nicotinamide (NA(Z) and NA(E)) with dimethyl sulfoxide (DMSO) have been predicted using ab initio SCF/6-31G(d,p) and DFT (BLYP/6-311++G(d,p)) calculations. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between nicotinamide (NA(Z) and NA(E)) and DMSO leads to large red shifts of the stretching vibrations for the hydrogen-bonded N-H bonds of nicotinamide and very strong increase in their IR intensity. The results from the BLYP/6-311++G(d,p) calculations show that the predicted red shifts of the nu(s)(NH) and nu(as)(NH) vibrations for the complex NA(E)-DMSO (1:2) (Deltanu(as)(NH)=-186 cm(-1) and Deltanu(s)(NH)=-198 cm(-1)) are in better agreement with the experimentally measured. The magnitudes of the wavenumber shifts are indicative of strong NH...O hydrogen-bonded interactions in both complexes. The calculations predict an increase of the IR intensity of nu(s)(NH) and nu(as)(NH) vibrations in the complexes up to 14 times. Having in mind that in more cases the predicted changes in the vibrational characteristics for the complexes studied are very near, it could be concluded that both conformers of nicotinamide, Z-conformer and E-conformer, are present in the solution forming the hydrogen-bonded complexes with DMSO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2008.06.036DOI Listing

Publication Analysis

Top Keywords

vibrational characteristics
12
hydrogen-bonded systems
8
nicotinamide naz
8
naz nae
8
blyp/6-311++gdp calculations
8
changes vibrational
8
red shifts
8
increase intensity
8
nusnh nuasnh
8
nuasnh vibrations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!