Here we demonstrate that nanobubbles can be used as cleaning agents both for the prevention of surface fouling and for defouling surfaces. In particular nanobubbles can be used to remove proteins that are already adsorbed to a surface, as well as for the prevention of nonspecific adsorption of proteins. Nanobubbles were produced on highly oriented pyrolytic graphite (HOPG) surfaces electrochemically and observed by atomic force microscopy (AFM). Nanobubbles produced by electrochemical treatment for 20 s before exposure to bovine serum albumin (BSA) were found to decrease protein coverage by 26-34%. Further, pre-adsorbed protein on a HOPG surface was also removed by formation of electrochemically produced nanobubbles. In AFM images, the coverage of BSA was found to decrease from 100% to 82% after 50 s of electrochemical treatment. The defouling effect of nanobubbles was also investigated using radioactively labeled BSA. The amount of BSA remaining on a stainless steel surface decreased by approximately 20% following 3 min of electrochemical treatment and further cycles of treatment effectively removed more BSA from the surface. In situ observations indicate that the air-water interface of the nanobubble is responsible for the defouling action of nanobubbles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2008.08.064 | DOI Listing |
Nanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFNanoscale
January 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
An all-vanadium-based lithium-ion full battery is successfully assembled with hierarchical micro-nano yolk-shell structures VO and VO as the cathode and anode, which were obtained through a facile solvothermal method with heat treatment under different atmospheres. When used as the cathode of the lithium-ion battery, the hierarchical micro-nano yolk-shell VO demonstrated higher capacities than bulk VO, commercial LiFePO, and LiNiCoMnO cathodes at various current densities. The all-vanadium-based lithium-ion full battery shows good cycle performance at 0.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.
View Article and Find Full Text PDFCompelling concerns about antimicrobial resistance and the emergence of multidrug-resistant pathogens call for novel strategies to address these challenges. Nanoparticles show promising antimicrobial activities; however, their actions are hindered primarily by the bacterial hydrophilic-hydrophobic barrier. To overcome this, we developed a method of electrochemically anchoring sodium dodecyl sulfate (SDS) coatings onto silver nanoparticles (AgNPs), resulting in improved antimicrobial potency.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
The electrochemical nitrate (NO) reduction reaction (NORR) offers a promising route for NO wastewater treatment and sustainable ammonia (NH) synthesis. However, the reaction still faces the challenges of unsatisfactory productivity and selectivity. Herein, we report a hierarchical nanoporous Ag,Ni-codoped Cu (np Ag,Ni-Cu) catalyst that exhibits a high NH Faradaic efficiency of 98.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!