Although phenotypic plasticity can be advantageous in fluctuating environments, it may come too late if the environment changes fast. Complementary chromatic adaptation is a colorful form of phenotypic plasticity, where cyanobacteria tune their pigmentation to the prevailing light spectrum. Here, we study the timescale of chromatic adaptation and its impact on competition among phytoplankton species exposed to fluctuating light colors. We parameterized a resource competition model using monoculture experiments with green and red picocyanobacteria and the cyanobacterium Pseudanabaena, which can change its color within approximately 7 days by chromatic adaptation. The model predictions were tested in competition experiments, where the incident light color switched between red and green at different frequencies (slow, intermediate, and fast). Pseudanabaena (the flexible phenotype) competitively excluded the green and red picocyanobacteria in all competition experiments. Strikingly, the rate of competitive exclusion was much faster when the flexible phenotype had sufficient time to fully adjust its pigmentation. Thus, the flexible phenotype benefited from its phenotypic plasticity if fluctuations in light color were relatively slow, corresponding to slow mixing processes or infrequent storms in their natural habitat. This shows that the timescale of phenotypic plasticity plays a key role during species interactions in fluctuating environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/591680 | DOI Listing |
PLoS Biol
January 2025
Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.
View Article and Find Full Text PDFPLoS One
January 2025
BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America.
Trichoderma spp. are among the most studied biocontrol agents. While extensive work has been done to understand Trichoderma antagonistic mechanisms, additional research is needed to fully understand how Trichoderma spp.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain.
Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μ values ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!