Objective: To determine the effectiveness and safety of 2 sedative-analgesic protocols to facilitate assisted ventilation in healthy dogs.
Animals: 12 healthy dogs.
Procedures: Dogs were randomly assigned to 2 groups. Mean dosages for protocol 1 were diazepam (0.5 mg/kg/h [n = 3 dogs]) or midazolam (0.5 mg/kg/h [3]), morphine (0.6 mg/kg/h [6]), and medetomidine (1.0 microg/kg/h [6]). Mean dosages for protocol 2 were diazepam (0.5 mg/kg/h [n = 3]) or midazolam (0.5 mg/kg/h [3]), fentanyl (18 microg/kg/h [6]), and propofol (2.5 mg/kg/h [6]). Each dog received the drugs for 24 consecutive hours. All dogs were mechanically ventilated with adjustments in minute volume to maintain normocapnia and normoxemia. Cardiorespiratory variables were recorded. A numeric comfort score was assigned hourly to assess efficacy. Mouth care, position change, and physiotherapy were performed every 6 hours. Urine output was measured every 4 hours.
Results: Use of both protocols maintained dogs within optimal comfort ranges > 85% of the time. The first dog in each group was excluded from the study. Significant decreases in heart rate, oxygen consumption, and oxygen extraction ratio were evident for protocol 1. Cardiac index values in ventilated dogs were lower than values reported for healthy unsedated dogs. Oxygen delivery, lactate concentration, and arterial base excess remained within reference ranges for both protocols.
Conclusions And Clinical Relevance: Use of both protocols was effective for facilitating mechanical ventilation. A reduction in cardiac index was detected for both protocols as a result of bradycardia. However, oxygen delivery and global tissue perfusion were not negatively affected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.69.10.1351 | DOI Listing |
JMIR Res Protoc
January 2025
College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
Background: There is limited evidence of high-quality, accessible, culturally safe, and effective digital health interventions for Indigenous mothers and babies. Like any other intervention, the feasibility and efficacy of digital health interventions depend on how well they are co-designed with Indigenous communities and their adaptability to intracultural diversity.
Objective: This study aims to adapt an existing co-designed mobile health (mHealth) intervention app with health professionals and Aboriginal and/or Torres Strait Islander mothers living in South Australia.
J Clin Neurophysiol
November 2024
Department of Clinical Neurophysiology, Federal University of São Paulo, São Paulo, SP, Brazil.
Purpose: Electrical stimulation of trigeminal nerve branches elicits early and late reflex responses in the cervical muscles, known as the trigeminocervical reflex (TCR). This study aimed to evaluate the neurophysiological aspects, stimulation patterns, and topographic distribution of short-latency TCR components in humans in the absence of voluntary muscle activation.
Methods: This prospective observational study included 30 participants.
Vis Comput Ind Biomed Art
January 2025
School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Diagnostic Nanotools Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain.
Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!