Mass transport process, adsorption and desorption, and electrochemical reaction were analyzed to investigate the mechanism of enhancement on boron-doped diamond (BDD) electrode electrochemical degradation efficiency by ultrasound (US). US has considerable influences on the above steps of electrochemical oxidation. Mass transport coefficients of Ph and PA reach 2.0 x 10(-5) m/s with US, from 5.4 x 10(-6)m/s and 6.7 x 10(-6) m/s in EC process, increasing by 270% and 199%, respectively. The effect of US on adsorption and desorption has relationship with electrochemical adsorption properties of pollutants on BDD electrode surface. The adsorption amount of Ph decreases from 6.49 x 10(-10) mol/cm2 to 1.39 x 10(-10) mol/cm2, with the desorption of polymer intermediates promoted, so US makes positive effect with benefit to direct oxidation and oxidation peak current increases by 32%. For PA, the adsorption amount decreases from 1.25 x 10(-11) mol/cm2 to 3.11 x 10(-12) mol/cm2 with US, and no direct oxidation happens in US-EC process. US can improve degradation efficiency of BDD electrode and the enhancement on Ph degradation is more effective. Average electrochemical oxidation energy efficiency (AEE) of Ph increases by 287%, more than 224% of PA. This is because both direct and indirect oxidation for Ph can be enhanced by US, while for PA, direct oxidation almost disappears.

Download full-text PDF

Source

Publication Analysis

Top Keywords

degradation efficiency
12
bdd electrode
12
direct oxidation
12
enhancement boron-doped
8
boron-doped diamond
8
electrode electrochemical
8
electrochemical degradation
8
mass transport
8
adsorption desorption
8
electrochemical oxidation
8

Similar Publications

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF

Metabolomics combined with physiology and transcriptomics reveal the regulation of key nitrogen metabolic pathways in alfalfa by foliar spraying with nano-selenium.

J Nanobiotechnology

January 2025

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.

Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'.

View Article and Find Full Text PDF

Net energy of grains for dairy goats differed with processing methods and grain types.

J Anim Sci Biotechnol

January 2025

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.

Methods: Eighteen castrated Guanzhong dairy goats (44.

View Article and Find Full Text PDF

Design and fabrication of xylan-graft-poly (methyl methacrylate) thermoplastic via SARA ATRP.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:

Due to the emphasis on the environmental and health issues caused by petroleum-based plastics, renewable lignocellulosic materials emerge as promising substitutes. However, their practical application remains hindered by unsatisfactory properties such as fragility and sensitivity to water. Dealing with the challenge of non-thermal processing of xylan and addressing the issue of performance degradation resulting from the hygroscopicity of materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!