Immunohistochemical and morphologic basis for glutamate signaling in the rat stomach.

Biol Pharm Bull

Laboratory of Cytology, Department of Medical Technology, Faculty of Health Sciences, Kyorin University, 476 Miyashita-cho, Hachioji, Tokyo 192-8508, Japan.

Published: October 2008

Physiologic studies conducted in rats have demonstrated that afferent fibers of the gastric branch of the vagus nerve increase their firing rate with the intragastric administration of the amino acid glutamate, and the increased firing rate is blocked by the depletion of serotonin (5-HT), administration of the blocker for the serotonin type-3 receptor (SR3), or nitric oxide synthase (NOS). To understand glutamate signaling in the gastric mucosa at the cellular level, we have been studying rats as an animal model using anatomic and immunohistochemical procedures. Our results have indicated that 5-HT-immunoreactive (ir) cells are present in the superficial part of the gastric mucosal epithelium and in the base of the fundic glands, whereas immunoreactivity for SR3 is localized in the neck and its vicinity of the fundic glands. Further, NOS1/neuronal NOS-ir cells with a bipolar shape are located in the lamina propria where a dense network of neuronal cells is present. These results suggest that complex cellular events take place during intragastric glutamate signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.31.1838DOI Listing

Publication Analysis

Top Keywords

glutamate signaling
12
firing rate
8
fundic glands
8
immunohistochemical morphologic
4
morphologic basis
4
glutamate
4
basis glutamate
4
signaling rat
4
rat stomach
4
stomach physiologic
4

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.

View Article and Find Full Text PDF

Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.

Tomography

January 2025

NextGen Precision Health, Department of Radiology, University of Missouri Columbia, 1030 Hitt Street, Columbia, MO 65201, USA.

: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. : Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding.

View Article and Find Full Text PDF

The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown.

View Article and Find Full Text PDF

Therapeutic Potential of Shilong Qingxue Granule and Its Extract Against Glutamate Induced Neural Injury: Insights from In Vivo and In Vitro Models.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.

Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.

Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!