Enzymatic activities of some glycosyltransferases are markedly increased via complex formation with other transferases or cofactor proteins. We previously showed that beta1,3-N-acetylglucosaminyltransferase-2 (beta3Gn-T2) and beta3Gn-T8 can form a heterodimer in vitro and that the complex exhibits much higher enzymatic activity than either enzyme alone (Seko, A., and Yamashita, K. (2005) Glycobiology 15, 943-951). Here we examined this activation and the biological significance of complex formation in differentiated HL-60 cells. beta3Gn-T2 and -T8 were co-immunoprecipitated from the lysates of both-transfected COS-7 cells, indicating their association in vivo. We prepared inactive mutants of both enzymes by destroying the DXD motifs. The mixture of mutated beta3Gn-T2 and intact beta3Gn-T8 did not exhibit any activation, whereas the mixture of intact beta3Gn-T2 and mutated beta3Gn-T8 had increased activity, indicating the activation of beta3Gn-T2 via complex formation. Next, we compared expression levels of beta3Gn-T1-T8 in HL-60 cells and DMSO-treated differentiated HL-60 cells, which produce larger poly-N-acetyllactosamine chains. The expression level of beta3Gn-T8 in the differentiated cells was 2.6-fold higher than in the untreated cells. Overexpression of beta3Gn-T8, but not beta3Gn-T2, induced an increase in poly-N-acetyllactosamine chains in HL-60 cells. These results raise a possibility that up-regulation of beta3Gn-T8 in differentiated HL-60 cells increases poly-N-acetyllactosamine chains by activating intrinsic beta3Gn-T2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662248PMC
http://dx.doi.org/10.1074/jbc.M806933200DOI Listing

Publication Analysis

Top Keywords

hl-60 cells
24
poly-n-acetyllactosamine chains
16
differentiated hl-60
16
complex formation
12
cells
9
beta3gn-t2
8
beta13-n-acetylglucosaminyltransferase-2 beta3gn-t2
8
beta3gn-t8
8
beta3gn-t2 beta3gn-t8
8
beta3gn-t8 differentiated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!