Human-mediated dispersal of seeds over long distances.

Proc Biol Sci

Centre for Ecology and Hydrology, CEH Wallingford, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.

Published: February 2009

Human activities have fundamental impacts on the distribution of species through altered land use, but also directly by dispersal of propagules. Rare long-distance dispersal events have a disproportionate importance for the spread of species including invasions. While it is widely accepted that humans may act as vectors of long-distance dispersal, there are few studies that quantify this process. We studied in detail a mechanism of human-mediated dispersal (HMD). For two plant species we measured, over a wide range of distances, how many seeds are carried by humans on shoes. While over half of the seeds fell off within 5m, seeds were regularly still attached to shoes after 5 km. Semi-mechanistic models were fitted, and these suggested that long-distance dispersal on shoes is facilitated by decreasing seed detachment probability with distance. Mechanistic modelling showed that the primary vector, wind, was less important as an agent of long-distance dispersal, dispersing seeds less than 250 m. Full dispersal kernels were derived by combining the models for primary dispersal by wind and secondary dispersal by humans. These suggest that walking humans can disperse seeds to very long distances, up to at least 10 km, and provide some of the first quantified dispersal kernels for HMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664342PMC
http://dx.doi.org/10.1098/rspb.2008.1131DOI Listing

Publication Analysis

Top Keywords

long-distance dispersal
16
dispersal
10
human-mediated dispersal
8
seeds long
8
long distances
8
dispersal kernels
8
seeds
6
dispersal seeds
4
distances human
4
human activities
4

Similar Publications

What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.

View Article and Find Full Text PDF

Plate tectonics, cold adaptation and long-distance range expansion to remote archipelagos and the high Andes as drivers of a circumantarctic freshwater arthropod radiation.

Mol Phylogenet Evol

December 2024

SNSB-Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247 Munich, Germany; GeoBio-Center, Ludwig-Maximilians-University, Richard-Wagner-Straße 10, D-80333 Munich, Germany.

Disjunct distributions, characterised by spatially separated populations of related species, offer insights into historical biogeographic patterns and evolutionary processes. This study investigates the evolutionary history of the diving beetle subfamily Lancetinae through a phylogenomic approach incorporating ultraconserved elements (UCEs) and heritage genetic markers. Our findings support an early Miocene origin for Lancetinae, with subsequent diversification influenced by historical vicariance events and long-distance dispersal.

View Article and Find Full Text PDF

Background And Aims: Seed dispersal impacts plant fitness by shaping the habitat and distribution of offspring, influencing population dynamics and spatial genetic diversity. Whether the evolution of dispersal strategies varies across herbaceous life forms (annual, perennial, clonal) is inconclusive. This study examines how seed dispersal strategies vary between annual and perennial populations of Mimulus guttatus (syn.

View Article and Find Full Text PDF

Evolutionary consequences of long-distance dispersal in mosquitoes.

Curr Opin Insect Sci

December 2024

Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia. Electronic address:

Long-distance dispersal (LDD) provides a means for mosquitoes to invade new regions and spread adaptive alleles, including those conferring insecticide resistance. Most LDD takes place on human transport vessels and will typically be rarer and more directionally constrained than active flight but can connect populations and regions that are otherwise mutually inaccessible. These features make LDD worthy of specific consideration in mosquito research.

View Article and Find Full Text PDF

Background And Aims: Oophytum (Aizoaceae) is a locally endemic genus of the extremely fast evolving subfamily Ruschioideae and consists of only two formally accepted species (O. nanum and O. oviforme).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!