Background: The molecular mechanisms underlying melanoma tumor development and progression are still not completely understood. One of the new candidates that emerged from a recent gene expression profiling study is fatty acid-binding protein 7 (FABP7), involved in lipid metabolism, gene regulation, cell growth and differentiation.

Methods: We studied the functional role of FABP7 in human melanoma cell lines and using immunohistochemistry analyzed its expression pattern and clinical role in 11 nevi, 149 primary melanomas and 68 metastases.

Results: FABP7 mRNA and protein level is down-regulated following treatment of melanoma cell lines with a PKC activator (PMA) or MEK1 inhibitor (PD98059). Down-regulation of FABP7 using siRNA decreased cell proliferation and invasion but did not affect apoptosis. In clinical specimens, FABP7 was expressed in 91% of nevi, 71% of primary melanomas and 70% of metastases, with a cytoplasmic and/or nuclear localization. FABP7 expression was associated with tumor thickness in superficial spreading melanoma (P = 0.021). In addition, we observed a trend for an association between FABP7 expression and Ki-67 score (P = 0.070) and shorter relapse-free survival (P = 0.069) in this group of patients.

Conclusion: Our data suggest that FABP7 can be regulated by PKC and the MAPK/ERK1/2 pathway through independent mechanisms in melanoma cell lines. Furthermore, FABP7 is involved in cell proliferation and invasion in vitro, and may be associated with tumor progression in melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569959PMC
http://dx.doi.org/10.1186/1471-2407-8-276DOI Listing

Publication Analysis

Top Keywords

fabp7 involved
12
proliferation invasion
12
melanoma cell
12
cell lines
12
fabp7
10
protein fabp7
8
primary melanomas
8
cell proliferation
8
fabp7 expression
8
associated tumor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!