The local electronic structure of Fe(III) and Fe(II) ions in different alcohol solutions (methanol, ethanol, propan-1-ol) is investigated by means of soft X-ray absorption spectroscopy at the iron L 2,3-edge. The experimental spectra are compared with ligand field multiplet simulations. The solvated Fe(III) complex is found to exhibit octahedral symmetry, while a tetragonal symmetry is observed for Fe(II). A decrease in the solvent polarity increases the charge transfer from the oxygen of the alcohol to the iron ions. This conclusion is supported by Hartree-Fock calculations of the Mulliken charge distribution on the alcohols. A larger charge transfer is further observed from the solvent to Fe(III) compared to Fe(II), which is connected to the higher positive charge state of the former. Finally, iron ions in solution are found to prefer the high-spin configuration irrespective of their oxidation state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp8071266DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
8
charge transfer
8
iron ions
8
solvent alcohols
4
alcohols l-edge
4
iron
4
l-edge iron
4
iron solution
4
solution x-ray
4
absorption multiplet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!