In an effort to develop dual PPARalpha/gamma activators with improved therapeutic efficacy, a series of diaryl alpha-ethoxy propanoic acid compounds comprising two aryl groups linked by rigid oxime ether or isoxazoline ring were designed and synthesized and their biological activities were examined. Most of the compounds possessing an oxime ether linker were more potent PPARgamma activators than the lead PPARalpha/gamma dual agonist, tesaglitazar in vitro. Compound 18, one of the derivatives with an oxime ether linker, was found to selectively transactivate PPARgamma (EC 50 = 0.028 microM) over PPARalpha (EC 50 = 7.22 microM) in vitro and lower blood glucose in db/ db mice more than muraglitazar after oral treatment for 11 days.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm8003416DOI Listing

Publication Analysis

Top Keywords

oxime ether
12
ether linker
8
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel constrained
4
constrained meta-substituted
4
meta-substituted phenyl
4
phenyl propanoic
4

Similar Publications

Photocatalyzed Azidofunctionalization of Alkenes via Radical-Polar Crossover.

Angew Chem Int Ed Engl

January 2025

Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.

The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield.

View Article and Find Full Text PDF

A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by H NMR and C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC = 0.

View Article and Find Full Text PDF

Carbonic anhydrases (CAs) are crucial in regulating various physiological processes in the body. The overexpression of isoforms human carbonic anhydrases (hCA) IX and hCA XII is linked to tumour progression. The selective inhibition of CA IX and CA XII isoforms can result in the development of better cancer treatment strategies.

View Article and Find Full Text PDF

A site-selective functionalization of a C(sp)-H bond was achieved in the presence of an intrinsically more reactive C(sp)-H bond by controlling the orientation of a directing group via a photo-induced E/Z isomerization of an oxime ether. By combining E/Z isomerization and an electron deficient Cp*Ir(III) catalyst, the scope of oxime ethers in C(sp)-H functionalization was successfully expanded. Based on this strategy, the order of C-H activation was switchable and successive C(sp)-H/C(sp)-H and C(sp)-H/C(sp)-H double functionalizations were accomplished to construct densely functionalized structures.

View Article and Find Full Text PDF

In this work, a series of novel Pterostilbene-oxime ether-carboxylic acid (POC) derivatives (d1-d10, e1-e10 and 1-13) were designed, synthesized, and characterized by spectroscopic techniques. In order to further determine the absolute configuration of these compounds, one of them, compound d3, was investigated by X-ray single crystal diffraction method. d3 had a triclinic crystal with P-1 space group, and its CHCH and CHN was confirmed as E configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!