Post-synthetic modification of tagged metal-organic frameworks.

Angew Chem Int Ed Engl

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Published: December 2008

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200802908DOI Listing

Publication Analysis

Top Keywords

post-synthetic modification
4
modification tagged
4
tagged metal-organic
4
metal-organic frameworks
4
post-synthetic
1
tagged
1
metal-organic
1
frameworks
1

Similar Publications

A covalent organic framework-based nanoreactor for enhanced chemodynamic therapy through cascaded Fenton-like reactions and nitric oxide delivery.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.

Herein, we report a nanoscale composite COF material loaded with copper peroxide (CuO) and nitric oxide (NO) prodrug a stepwise post-synthetic modification. The obtained CuO2@COF-SNO can undergo a cascade reaction in the tumor microenvironment to generate reactive oxygen and nitrogen species (ROS/RNS) to enhance chemodynamic therapy of the tumor.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are hybrid inorganic-organic 3D coordination polymers with metal sites and organic linkers, which are a "hot" topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal-organic framework (actAl-MOF-TCPPCu) compound with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH compound by inserting Cu ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis.

View Article and Find Full Text PDF

This manuscript explores the post-synthetic modification (PSM) of amine-functionalized porous coordination cages, specifically focusing on the formation of imine bonds through reactions with aldehydes. Targeting various cage topologies, including zirconium-, magnesium-, and molybdenum-based structures, we demonstrate the tunability of cage solubility and porosity through selective functionalization where the proximity of amine groups on the parent cage impacts the extent of modification. The work highlights the reversible nature of imine formation, offering potential applications in solubility switching and mixed-metal solid synthesis.

View Article and Find Full Text PDF

Tuning Metal-Organic Framework Linker Chemistry for Transition Metal Ion Separations.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.

The pressing demand for critical metals necessitates the development of advanced ion separation technologies for circular resource economies. To separate transition metal ions, which exhibit near-identical chemical properties, adsorbents and membranes must be designed with ultraselective chemistries. We leverage the customizability of metal-organic frameworks (MOFs) to systematically study the role of material chemistry in sorption and selectivity of Co, Ni, and Cu.

View Article and Find Full Text PDF

Glutathione-functionalized covalent organic frameworks@silica as a hydrophilic-hydrophobic balanced mixed-mode stationary phase for highly efficient separation of compounds with a wide range of polarity.

Anal Chim Acta

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China. Electronic address:

Background: Covalent organic frameworks (COFs) are a highly promising stationary phase for high-performance liquid chromatography (HPLC), but the separation of polar compounds is limited by their low hydrophilicity. Therefore, it is crucial to develop novel COFs-based stationary phases with balanced hydrophilicity-hydrophobicity for the efficient separation of different polar compounds.

Results: In this paper, glutathione (GSH)-functionalized COFs@silica microspheres (GSH-COFs@SiO) were synthesized via a two-step, post-synthesis modification strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!