The VY1160 mutant is characterized by cell lysis in hypotonic solutions and generally increased permeability to substances for which Saccharomyces cerevisiae cells are not permeable. Two mutations, srb1 and ts1, have been identified in VY1160 mutant, and previous studies (Kozhina et al., 1979) have shown srb1 to be responsible for cell lysis. We now present evidence that the ts1 mutation leads to increased endocytosis in VY1160 cells. The internalization of lucifer yellow carbohydrazide in VY1160 cells is time-, temperature- and energy-dependent and consistent with a fluid-phase mechanism of endocytosis. The rate of steady-state accumulation of the dye at 37 degrees C is 145 ng/micrograms DNA per h for VY1160 mutant and 23 ng/micrograms DNA per h for S288C parental strain. Studies with isogenic strains having either the srb1 or the ts1 mutation, or SRB1 TS1 wild-type alleles have shown that only ts1 strains possess increased endocytosis. Quantitation of endocytosis in cells grown at 24 degrees C and shifted at 38 degrees C shows that ts1 strains, but not srb1 and wild-type strains, increase ten-fold the internalization of lucifer yellow 2 h after the shift at 38 degrees C. The analysis of ts1 x wild-type crosses provides evidence that the temperature-sensitive phenotype segregates together with the enhanced endocytosis. It is concluded that the increased endocytosis might explain the generally increased permeability of VY1160 mutant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.320070303 | DOI Listing |
J Nanobiotechnology
January 2025
Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements.
View Article and Find Full Text PDFSci Transl Med
January 2025
First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany.
In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China.
The wide range of applications and the enormous production of nanomaterials have raised the possibility that humans may simultaneously contact with various nanomaterials through multiple routes. Although numerous toxicity studies have been conducted on the toxicity of nanomaterials, knowledge of the combined toxicity of nanomaterials remains limited. Herein, the combined toxic effects of the two types of the most widely used nanomaterials, silver and silica, were studied on HeLa cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Central Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.
Background: Uncontrolled severe eosinophilic chronic rhinosinusitis (eCRS) is associated with elevated levels of Th2 cells and raised immunoglobulin concentrations in nasal polyp tissue. eCRS is characterized by high eosinophilic infiltration and type 2 inflammation. Gαi1/3 proteins participate in allergic inflammation by regulating immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!