Stem and root rot caused by the oomycete pathogen, Phytophthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense responses. In order to identify candidate signaling genes involved in the expression of Phytophthora resistance in soybean, a cDNA library was prepared from infected etiolated hypocotyl tissues of a Phytophthora resistant soybean cultivar harvested 2 and 4 h following P. sojae inoculation. In silico subtraction of 101,833 expressed sequence tags (ESTs) originating from unstressed cDNA libraries from 4,737 ESTs of this library resulted in identification of 204 genes that were absent in the unstressed libraries. Of the 204 identified genes, seven were P. sojae genes. Putative function of 91 of the 204 genes could not be assigned based on sequence comparison. Macroarray analyses of all 204 genes led to identification of 60 genes including 15 signaling-related soybean genes and three P. sojae genes, transcripts of which were induced twofold in P. sojae-infected tissues as compared to that in water controls. Eight soybean genes were down-regulated twofold following P. sojae infection as compared to water controls. Differential expression of a few selected genes was confirmed by conducting Northern and RT-PCR analyses. We have shown that two putative regulators of chromosome condensation 1 (RCC1) family proteins were down-regulated in the incompatible interaction. This observation suggested that the nucleocytoplasmic transport function for trafficking protein and non-coding RNA is suppressed during expression of race-specific Phytophthora resistance. Characterization of a cDNA library generated from tissues harvested almost immediately following P. sojae-infection of a resistant cultivar allowed us to identify many candidate signaling genes that are presumably involved in regulating the expression of defense-related pathways for expression of Phytophthora resistance in soybean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-008-0895-z | DOI Listing |
Tree Physiol
January 2025
Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.
Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.
View Article and Find Full Text PDFMol Plant
January 2025
College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China. Electronic address:
Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.
Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China.
While the rapid rise in bioinformatics has facilitated the identification of the domains and functions of many proteins, some still have no domain annotation or largely uncharacterized functions. However, the biological roles of unknown proteins were not clear in oomycetes. An analysis of the genome database identified the protein Ps495620, which has no domain annotations and functional predictions in .
View Article and Find Full Text PDFPlant Signal Behav
December 2025
National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China.
Tobacco () black shank disease, caused by , is a significant threat to tobacco crops, leading to severe economic losses. Prolonged use of agrochemicals to control this disease has prompted the exploration of eco-friendly biological control strategies. This study investigated the effects of , a biocontrol agent, on in comparison to , focusing on growth, biomass, root morphology and anatomy, hormonal changes, and osmotic regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!