AI Article Synopsis

  • The report discusses a high-energy solid-state laser system that utilizes a master-oscillator power-amplifier setup to generate large energy pulses for studying the dynamic Casimir effect.
  • The laser produces up to 250 mJ in a macro-pulse format, with individual micro-pulses lasting just 12 picoseconds, which mimics the energy characteristics of near-infrared free-electron lasers.
  • Additionally, it efficiently converts some of the energy to a shorter wavelength, achieving 40 mJ in the 750-850 nm range by pumping an optical parametric oscillator.

Article Abstract

We report on a high-energy solid-state laser based on a master-oscillator power-amplifier system seeded by a 5-GHz repetition-rate mode-locked oscillator, aimed at the excitation of the dynamic Casimir effect by optically modulating a microwave resonator. Solid-state amplifiers provide up to 250 mJ at 1064 nm in a 500-ns (macro-)pulse envelope containing 12-ps (micro-)pulses, with a macro/micropulse format and energy resembling that of near-infrared free-electron lasers. Efficient second-harmonic conversion allowed synchronous pumping of an optical parametric oscillator, obtaining up to 40 mJ in the range 750-850 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.015811DOI Listing

Publication Analysis

Top Keywords

laser system
4
system generating
4
generating 250-mj
4
250-mj bunches
4
bunches 5-ghz
4
5-ghz repetition
4
repetition rate
4
rate 12-ps
4
12-ps pulses
4
pulses report
4

Similar Publications

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!