10.7 Gb/s uncompensated transmission over a 470 km hybrid fiber link with in-line SOAs using MLSE and duobinary signals.

Opt Express

Corning Incorporated, 1 Riverfront Plaza, SP-AR-02-1, Corning, NY 14831, USA.

Published: September 2008

We experimentally demonstrate uncompensated 8-channel wavelength division multiplexing (WDM) and single channel transmission at 10.7 Gb/s over a 470 km hybrid fiber link with in-line semiconductor optical amplifiers (SOAs). Two different forms of the duobinary modulation format are investigated and compared. Maximum Likelihood Sequence Estimation (MLSE) receiver technology is found to significantly mitigate nonlinear effects from the SOAs and to enable the long transmission, especially for optical duobinary signals derived from differential phase shift keying (DPSK) signals directly detected after narrowband optical filter demodulation. The MLSE also helps to compensate for a non-optimal Fabry-Perot optical filter demodulator.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.015759DOI Listing

Publication Analysis

Top Keywords

107 gb/s
8
470 hybrid
8
hybrid fiber
8
fiber link
8
link in-line
8
duobinary signals
8
optical filter
8
gb/s uncompensated
4
uncompensated transmission
4
transmission 470
4

Similar Publications

Recently, the 2-µm wave band has gained increased interest due to its potential application for the next-generation optical communication. As a proven integration platform, silicon photonics also benefit from the lower nonlinear absorption and larger electro-optic coefficient. However, this spectral range is far beyond the photodetection range of germanium, which places an ultimate limit for on-chip applications.

View Article and Find Full Text PDF

An Improved End-to-End Autoencoder Based on Reinforcement Learning by Using Decision Tree for Optical Transceivers.

Micromachines (Basel)

December 2021

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China.

In this paper, an improved end-to-end autoencoder based on reinforcement learning by using Decision Tree for optical transceivers is proposed and experimentally demonstrated. Transmitters and receivers are considered as an asymmetrical autoencoder combining a deep neural network and the Adaboost algorithm. Experimental results show that 48 Gb/s with 7% hard-decision forward error correction (HD-FEC) threshold under 65 km standard single mode fiber (SSMF) is achieved with proposed scheme.

View Article and Find Full Text PDF

With an ever-increasing interest in secure and reliable free-space optical communication, upconversion detectors enabled through nonlinear optical processes are an attractive route to transmitting data as a mid-infrared signal. This spectral region is known to have a higher transmissivity through the atmosphere. In this work, we present an upconversion scheme for detection in the silicon absorption band using magnesium-oxide doped periodically poled lithium niobate to generate 21 mW of a 3.

View Article and Find Full Text PDF

We have, so far as we know, proposed and demonstrated the first 30 Gb/s four-level pulse amplitude modulation (PAM4) underwater wireless laser transmission (UWLT) system with an optical beam reducer/expander over 12.5-m piped underwater channel/2.5-m high-turbidity harbour underwater channel.

View Article and Find Full Text PDF

A polarization-division-multiplexing (PDM)-based bi-directional fibre-free-space optical (FSO) integration with two reflective semiconductor optical amplifiers (RSOAs) scheme to efficiently wipe off the modulated data for upstream modulation is proposed and successfully demonstrated. For downstream modulation, a high-speed 128 Gb/s vestigial sideband (VSB)-four-level pulse amplitude modulation (PAM4) fibre-FSO integration is feasibly established. The transmission capacity is increased up to four times through PDM operation and VSB-PAM4 modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!