Objectives: The purpose of this systematic review was to investigate the association between dietary intake of citrus fruits and pancreatic cancer risk.
Methods: Authors searched electronic databases and the reference lists of publications of studies addressing diet and pancreatic cancer up to December 2007. All of the epidemiological studies that obtained individual data on dietary intake of citrus fruits and presented risk estimates of the association between intake of citrus fruits and risk of pancreatic cancer were identified and included. Using general variance-based methods, study-specific odds ratios (ORs)/relative risk and associated confidence interval (CI)/SE for highest versus lowest intake of citrus fruits level were extracted from each article.
Results: Nine articles including 4 case-control studies and 5 cohort studies proved eligible. Overall summary OR using random effect model suggested an inverse association in risk of pancreatic cancer with intake of citrus fruits (summary OR, 0.83; 95% CI, 0.70-0.98) with large heterogeneity across studies (I = 49.9%).
Conclusions: Pooled results from observational studies showed an inverse association between intake of citrus fruits and the risk of pancreatic cancer, although results vary substantially across studies, and the apparent effect is restricted to the weaker study design (case-control studies).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MPA.0b013e318188c497 | DOI Listing |
Front Oncol
January 2025
Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.
Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China.
Background: Pancreatic cancer remains one of the deadliest malignancies, largely due to its late diagnosis and lack of effective therapeutic targets.
Materials And Methods: Using traditional machine learning methods, including random-effects meta-analysis and forward-search optimization, we developed a robust signature validated across 14 publicly available datasets, achieving a summary AUC of 0.99 in training datasets and 0.
Heliyon
January 2025
Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany.
The pancreatic ductal adenocarcinoma (PDAC) is among the deadliest tumor diseases worldwide. While treatment options have generally become more diverse, little progress has been made in the treatment of PDAC and the median survival time for patients with locally advanced PDAC is between 8.7 and 13.
View Article and Find Full Text PDFHeliyon
January 2025
Department of General Surgery, Fribourg Cantonal Hospital, 1700, Fribourg, Switzerland.
Background: Current management of patients with borderline resectable pancreatic adenocarcinoma (BR-PDAC) depends on the degree of involvement of the major arterial and venous structures. The aim of this study was to evaluate 3D segmentation and printing to predict tumor size and vascular involvement of BR-PDAC to improve pre-operative planning of vascular resection and better select patients for neoadjuvant therapy.
Methods: We retrospectively evaluated 16 patients with BR-PDAC near vascular structures who underwent pancreatoduodenectomy (PD) with or without vascular resection between 2015 and 2021.
Biomark Res
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!