Background: Statins, a family of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase inhibitors, are being investigated for the therapy and prevention of cancers. Here we aimed to investigate the effects of simvastatin on chronic myelogenous leukemia (CML) cells in vitro and in vivo, and to elucidate the mechanisms.

Methods: Cell proliferation and cell cycle were measured after K562 cells were incubated with simvastatin, and differentially expressed genes were determined by oligonucleotide microarray. Changes of 2 genes obtained by oligonucleotide microarray were validated by real-time RT-PCR, and immunohistochemistry was performed to determine expression of proliferating cell nuclear antigen (PCNA). Finally, a xenograft tumor model was constructed to evaluate the effects of simvastatin in vivo.

Results: Simvastatin could inhibit K562 cell proliferation, and the inhibition rate was approximately 30% after treatment with 20 mumol/l simvastatin for 48 h. Cell cycle was arrested in G(1) phase, as shown by flow cytometry results. Fifteen downregulated, 9 upregulated cell cycle-related genes and decreased PCNA protein were observed in the presence of simvastatin. Furthermore, simvastatin exhibited impairment of xenograft tumor growth in nude mice and also blocked cell cycle in G(1) phase.

Conclusion: Simvastatin can inhibit CML cell proliferation in vitro and in vivo, and its mechanisms might be involved in cell cycle regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000158663DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
vitro vivo
12
cell proliferation
12
cell
10
simvastatin
9
simvastatin chronic
8
chronic myelogenous
8
myelogenous leukemia
8
effects simvastatin
8
oligonucleotide microarray
8

Similar Publications

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

Ocrelizumab dose selection for treatment of pediatric relapsing-remitting multiple sclerosis: results of the OPERETTA I study.

J Neurol

January 2025

Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background: The presented study identified the appropriate ocrelizumab dosing regimen for patients with pediatric-onset multiple sclerosis (POMS).

Methods: Patients with POMS aged 10-17 years were enrolled into cohort 1 (body weight [BW] < 40 kg, ocrelizumab 300 mg) and cohort 2 (BW ≥ 40 kg, ocrelizumab 600 mg) during a 24-week dose-exploration period (DEP), followed by an optional ocrelizumab (given every 24 weeks) extension period.

Primary Endpoints: pharmacokinetics, pharmacodynamics (CD19 B-cell count); secondary endpoint: safety; exploratory endpoints: MRI activity, protocol-defined relapses, Expanded Disability Status Scale (EDSS) score change.

View Article and Find Full Text PDF

Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.

View Article and Find Full Text PDF

Classical cell cycle kinase limits tubulin polyglutamylation and cilium stability.

J Cell Biol

February 2025

Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.

Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.

View Article and Find Full Text PDF

Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence.

Aging Dis

January 2025

Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!