A computer-control system for electron microscopes is described. The aim is to reduce a complex series of vacuum-system controls to a menu-driven program that simplifies the operation of the microscope. The system also incorporates image processing, notebook, computer-aided design, and communication functions. It is designed around a commercially available computer workstation. This system has been implemented on an institute-built photoelectron microscope of ultrahigh-vacuum design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3991(91)90152-vDOI Listing

Publication Analysis

Top Keywords

system electron
8
electron microscopes
8
computer-aided control
4
control design
4
design image-processing
4
system
4
image-processing system
4
microscopes computer-control
4
computer-control system
4
microscopes described
4

Similar Publications

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr.

View Article and Find Full Text PDF

Physical Isolation Strategy in Multi-Layer Self-Nanoemulsifying Pellets: Improving Dissolution and Drug Loading Efficiency of Ramipril.

J Pharm Sci

January 2025

Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:

Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).

View Article and Find Full Text PDF

Engineering electrogenetic interfaces for mammalian cell control.

Cell Chem Biol

January 2025

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland. Electronic address:

Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!