The coccolithophore Emiliania huxleyi is one of the most successful eukaryotes in modern oceans. The two phases in its haplodiploid life cycle exhibit radically different phenotypes. The diploid calcified phase forms extensive blooms, which profoundly impact global biogeochemical equilibria. By contrast, the ecological role of the noncalcified haploid phase has been completely overlooked. Giant phycodnaviruses (Emiliania huxleyi viruses, EhVs) have been shown to infect and lyse diploid-phase cells and to be heavily implicated in the regulation of populations and the termination of blooms. Here, we demonstrate that the haploid phase of E. huxleyi is unrecognizable and therefore resistant to EhVs that kill the diploid phase. We further show that exposure of diploid E. huxleyi to EhVs induces transition to the haploid phase. Thus we have clearly demonstrated a drastic difference in viral susceptibility between life cycle stages with different ploidy levels in a unicellular eukaryote. Resistance of the haploid phase of E. huxleyi provides an escape mechanism that involves separation of meiosis from sexual fusion in time, thus ensuring that genes of dominant diploid clones are passed on to the next generation in a virus-free environment. These "Cheshire Cat" ecological dynamics release host evolution from pathogen pressure and thus can be seen as an opposite force to a classic "Red Queen" coevolutionary arms race. In E. huxleyi, this phenomenon can account for the fact that the selective balance is tilted toward the boom-and-bust scenario of optimization of both growth rates of calcifying E. huxleyi cells and infectivity of EhVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572935 | PMC |
http://dx.doi.org/10.1073/pnas.0807707105 | DOI Listing |
Heliyon
December 2024
Department of Plant and Soil Sciences, 117 Dorman Hall, Box 9555, Mississippi State University, Mississippi State, MS, 39762, USA.
Temperature is a fundamental factor influencing the processes of seed germination. Investigating the response of carinata to thermal stress and establishing a dependable and efficient method for screening thermotolerance will enhance breeding programs and model applications. We assessed the response of 12 carinata genotypes to a range of eight temperatures, spanning from 8 to 37 °C, throughout the germination process.
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid.
View Article and Find Full Text PDFElife
November 2024
Université Paris Cité, Institut Jacques Monod, Paris, France.
Signs of ageing become apparent only late in life, after organismal development is finalized. Ageing, most notably, decreases an individual's fitness. As such, it is most commonly perceived as a non-adaptive force of evolution and considered a by-product of natural selection.
View Article and Find Full Text PDFJ Phycol
December 2024
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Life cycles with a prolonged haploid phase are thought to be correlated with greater rates of selfing and asexual reproduction. In red algae, recent population genetic studies have aimed to test this prediction but have mostly focused on marine species with separate sexes. We characterized the reproductive system of the obligately monoicous (i.
View Article and Find Full Text PDFMalaria parasites are haploid within humans, but infections often contain genetically distinct groups of clonal parasites. When the per-infection number of genetically distinct clones (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!