In proteomics multi-dimensional fractionation techniques are widely used to reduce the complexity of peptide mixtures subjected to mass spectrometric analysis. Here, we describe the sequential use of strong cation exchange and reversed phase liquid chromatography in the separation of peptides generated by a relatively little explored metallo-endopeptidase with Lys-N cleavage specificity. When such proteolytic peptides are subjected to low-pH strong cation exchange we obtain fractionation profiles in which peptides from different functional categories are well separated. The four categories we distinguish and are able to separate to near completion are (I) acetylated N-terminal peptides; (II) singly phosphorylated peptides containing a single basic (Lys) residue; (III) peptides containing a single basic (Lys) residue; and (IV) peptides containing more than one basic residue. Analyzing these peptides by LC-MS/MS using an ion trap with both collision as well as electron transfer-induced dissociation provides unique optimal targeted strategies for proteome analysis. The acetylated peptides in category I can be identified confidently by both CID and ETcaD, whereby the ETcaD spectra are dominated by sequence informative Z-ion series. For the phosphorylated peptides in category II and the "normal" single Lys containing peptides in category III ETcaD provides unique straightforward sequence ladders of c'-ions, from which the exact location of possible phosphorylation sites can be easily determined. The later fractions, category IV, require analysis by both ETcaD and CID, where it is shown that electron transfer dissociation performs relatively well for these multiple basic residues containing peptides, as is expected. We argue that the well resolved separation of functional categories of peptides observed is characteristic for Lys-N-generated peptides. Overall, the combination of Lys-N proteolysis, low-pH strong cation exchange, and reversed phase separation, with CID and ETD induced fragmentation, adds a new very powerful method to the toolbox of proteomic analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/mcp.M800285-MCP200 | DOI Listing |
Sci Total Environ
January 2025
Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:
This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFSci Rep
January 2025
Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.
The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
In this study, synthetic wastewater containing 110 µg/L arsenate (As(V)), 0-20 mg/L fulvic acid (FA), and 0-12.3 mg/L phosphate was treated with 3 mg/L Fe. The mechanisms of FA and phosphate effects on As(V) removal by ferric chloride were determined using 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!