The pig is born with limited iron supplies. If not supplemented, piglets dramatically loose their body iron stores during the first few days of postnatal life. The aim of this study was to investigate the influence of hepatic iron content on susceptibility of blood cells to oxidative stress. Four 1-day-old and three 7-days-old animals were used in this study. The alkaline version of the comet assay was used to measure DNA damage. As expected, iron body stores of non-supplemented animals decrease significantly during the first 4 days of life. However, no difference in background DNA damage was found between untreated lymphocytes from these two groups of animals, despite the difference in their hepatic iron content. Interestingly, DNA damage induced by H2O2 and X-radiation in lymphocytes taken from 1-day-old piglets was significantly higher than in those taken from 7-days-old animals. In contrast, NaOCl or tert-butyl-hydroxide also induced significant amounts of DNA damage, but no differences between the two groups of piglets were found. Our data show that decreased hepatic iron content corresponds with decreased susceptibility of blood lymphocytes to oxidative stressors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2008.08.020 | DOI Listing |
FASEB J
January 2025
Department of Nutrition, Second Military Medical University, Shanghai, China.
Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:
Background And Aims: Chronic apical periodontitis (CAP), an inflammatory disease of the oral cavity caused by bacterial infections with Porphyromonas gingivalis (P. gingivalis) as a key pathogen, has been associated with systemic effects, potentially influencing distant organs including liver. The liver plays a key role in iron metabolism and immunity by hepcidin.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA.
Purpose: To investigate the impact of iron particle size on and fat fraction (FF) estimations for coexisting hepatic iron overload and steatosis condition using Monte Carlo simulations and phantoms.
Methods: Three iron particle sizes (0.38, 0.
Environ Pollut
January 2025
Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China. Electronic address:
Iron is one of the indispensable trace elements in living organisms. However, excessive iron deposition in organisms is prone to induce dysfunction of the liver and other vital organs. The present study aimed to investigate the mechanism how aquatic high iron affects iron transport and induces hepatic injury in zebrafish.
View Article and Find Full Text PDFJ Gastrointestin Liver Dis
December 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Background And Aims: Wilson disease (WD) results in the defective incorporation of copper into ceruloplasmin as well as decreased biliary copper excretion. Secondary iron overload has also been associated with WD; however, the prevalence is currently unknown. This study aims to determine the prevalence of potential secondary iron overload in patients suspected to have WD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!