RFamide neuropeptides inhibit murine and human adipose differentiation.

Biochem Biophys Res Commun

División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México.

Published: December 2008

RFamide neuropeptides NPFF and NPAF affect gene expression in mature 3T3-L1 adipocytes but their role on adipogenesis is unknown. Here, we show that NPFF, NPAF, and NPSF inhibited the differentiation of 3T3-F442A preadipocytes in a concentration-dependent manner, but had no effect on 3T3-L1 adipogenesis. All three neuropeptides also blocked the adipose differentiation of normal and lipoma-derived human preadipocytes. The antiadipogenic effect of RFamide neuropeptides was linked with the overexpression of Id3 gene and the inhibition by NPAF remained after neuropeptide removal and further incubation of 3T3 cells with adipogenic medium. Our results show that NPFF, NPAF and NPSF negatively affect adipogenesis and suggest that these compounds participate in the regulation of the adipose tissue development by the central nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.09.071DOI Listing

Publication Analysis

Top Keywords

rfamide neuropeptides
12
npff npaf
12
adipose differentiation
8
npaf npsf
8
neuropeptides inhibit
4
inhibit murine
4
murine human
4
human adipose
4
differentiation rfamide
4
neuropeptides npff
4

Similar Publications

Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus.

Vitam Horm

January 2025

Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:

Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins.

View Article and Find Full Text PDF

Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease is increasingly affecting aging societies and primarily appears in a sporadic form linked to various genetic and environmental factors.
  • The condition can be viewed as an intensified version of the natural aging process of the brain, marked by the buildup of amyloid plaques due to impaired amyloid elimination.
  • The review focuses on the role of specific neuropeptides in accelerating dementia and explores their potential as therapeutic targets to slow down disease progression.
View Article and Find Full Text PDF

RF-amide peptide receptors including the neuropeptide FF receptor 1 (NPFFR1) are G protein-coupled receptors (GPCRs) that modulate diverse physiological functions. High conservation of endogenous ligands and receptors makes the identification of selective ligands challenging. Previously identified antagonists mimic the C-terminus of peptide ligands and lack selectivity towards the closely related neuropeptide FF receptor 2 (NPFFR2) or the neuropeptide Y receptor (YR).

View Article and Find Full Text PDF

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for depression neurobiology. As the latest member of the RFamide peptide family in mammals, pyroglutamylated RFamide peptide (QRFP) is closely implicated in neuroendocrine maintenance by activating G-protein-coupled receptor 103 (GPR103). We hypothesized that QRFP and GPR103 might contribute to chronic stress-induced depression by promoting corticotropin-releasing hormone (CRH) release from neurons in the paraventricular nucleus (PVN), and various methods were employed in this study, with male C57BL/6J mice adopted as the experimental subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!