The therapeutic effect of concurrent chemoradiotherapy with TS-1 has been confirmed in various solid tumors; however, the detailed mechanism of action has not yet been fully elucidated. In the present study, we identified hypoxia-inducible factor-1 (HIF-1) as one of the targets of TS-1 in chemoradiotherapy. In growth delay assays using a tumor xenograft of non-small-cell lung carcinoma, H441, TS-1 treatment enhanced the therapeutic effect of single gamma-ray radiotherapy (14 Gy) and significantly delayed tumor growth by 1.58-fold compared to radiotherapy alone (P < 0.01). An optical in vivo imaging experiment using a HIF-1-dependent 5HRE-luc reporter gene revealed that TS-1 treatment suppressed radiation-induced activation of HIF-1 in the tumor xenografts. The suppression led to apoptosis of endothelial cells resulting in both a significant decrease in microvessel density (P < 0.05; vs radiation therapy alone) and a significant increase in apoptosis of tumor cells (P < 0.01; vs radiation therapy alone) in tumor xenografts. All of these results indicate that TS-1 enhances radiation-induced apoptosis of endothelial cells by suppressing HIF-1 activity, resulting in an increase in radiosensitivity of the tumor cells. Our findings strengthen the importance of both HIF-1 and its downstream gene, such as vascular endothelial cell growth factor, as therapeutic targets to enhance the effect of radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11158924PMC
http://dx.doi.org/10.1111/j.1349-7006.2008.00943.xDOI Listing

Publication Analysis

Top Keywords

ts-1 enhances
8
hypoxia-inducible factor-1
8
endothelial cell
8
ts-1 treatment
8
tumor xenografts
8
apoptosis endothelial
8
endothelial cells
8
radiation therapy
8
tumor cells
8
ts-1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!