Arabidopsis thaliana acyl-CoA-binding protein 2 (ACBP2) was observed to interact with farnesylated protein 6 (AtFP6), which has a metal-binding motif (M/LXCXXC). Their interaction and expression in response to heavy metals were investigated. Yeast two-hybrid analysis and in vitro assays showed that an ACBP2 derivative lacking ankyrin repeats did not interact with AtFP6, indicating that the ankyrin repeats mediate protein-protein interaction. Autofluorescence-tagged ACBP2 and AtFP6 transiently co-expressed in tobacco (Nicotiana tabacum) were both targeted to the plasma membrane. Reverse transcriptase polymerase chain reaction and northern blot analyses revealed that AtFP6 mRNA was induced by cadmium (Cd(II)) in A. thaliana roots. Assays using metal-chelate affinity chromatography demonstrated that in vitro translated ACBP2 and AtFP6 bound lead (Pb(II)), Cd(II) and copper (Cu(II)). Consistently, assays using fluorescence analysis confirmed that (His)(6)-AtFP6 bound Pb(II), like (His)(6)-ACBP2. Arabidopsis thaliana plants overexpressing ACBP2 or AtFP6 were more tolerant to Cd(II) than wild-type plants. Plasma membrane-localized ACBP2 and AtFP6 probably mediate Pb(II), Cd(II) and Cu(II) transport in A. thaliana roots. Also, (His)(6)-ACBP2 binds [(14)C]linoleoyl-CoA and [(14)C]linolenoyl-CoA, the precursors for phospholipid repair following lipid peroxidation under heavy metal stress at the plasma membrane. ACBP2-overexpressing plants were more tolerant to hydrogen peroxide than wild-type plants, further supporting a role for ACBP2 in post-stress membrane repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2008.02631.x | DOI Listing |
Plant Signal Behav
August 2010
School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance.
View Article and Find Full Text PDFNew Phytol
February 2009
School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China;Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China;State (China) Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, China.
Arabidopsis thaliana acyl-CoA-binding protein 2 (ACBP2) was observed to interact with farnesylated protein 6 (AtFP6), which has a metal-binding motif (M/LXCXXC). Their interaction and expression in response to heavy metals were investigated. Yeast two-hybrid analysis and in vitro assays showed that an ACBP2 derivative lacking ankyrin repeats did not interact with AtFP6, indicating that the ankyrin repeats mediate protein-protein interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!