The ionotropic glutamate receptors are localized in the pre- and postsynaptic membrane of neurons in the brain. Activation by the principal excitatory neurotransmitter glutamate allows the ligand binding domain to change conformation, communicating opening of the channel for ion conduction. The free energy of the GluR2 S1S2 ligand binding domain (S1S2) closure transition was computed using a combination of thermodynamic integration and umbrella sampling modeling methods. A path that involves lowering the charge on E705 was chosen to clarify the role of this binding site residue. A continuum electrostatics approach in S1S2 is used to show E705, located in the ligand binding cleft, stabilizes the closed conformation of S1S2 via direct interactions with other protein residues, not through the ligand. In the closed conformation, in the absence of a ligand, S1S2 is somewhat more closed than what has been reported in X-ray structures. A semiopen conformation has been identified which is characterized by disruption of a single cross-cleft interaction and differs only slightly in energy from the fully closed S1S2. The fully open S1S2 conformation exhibits a wide energy well and shares structural similarity with the apo S1S2 crystal structure. Hybrid continuum electrostatics/MD calculations along the chosen closure transition pathway reveal solvation energies, and electrostatic interaction energies between two lobes of the protein increase the relative energetic difference between the open and closed conformational states. By analyzing the role of several cross-cleft contacts as well as other binding site residues, we demonstrate how S1S2 interactions facilitate formation of the closed conformation of the GluR2 ligand binding domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814871 | PMC |
http://dx.doi.org/10.1021/bi801367d | DOI Listing |
Med Chem
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibn Zohr University, Agadir, Morocco.
Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFAdv Mater
January 2025
Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
A large portion of the Intrinsically Disordered Regions (IDRs) in protein sequences interact with proteins, nucleic acids, and other types of ligands. Correspondingly, dozens of sequence-based predictors of binding IDRs were developed. A recently completed second community-based Critical Assessments of protein Intrinsic Disorder prediction (CAID2) evaluated 32 predictors of binding IDRs.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!