The ionotropic glutamate receptors are localized in the pre- and postsynaptic membrane of neurons in the brain. Activation by the principal excitatory neurotransmitter glutamate allows the ligand binding domain to change conformation, communicating opening of the channel for ion conduction. The free energy of the GluR2 S1S2 ligand binding domain (S1S2) closure transition was computed using a combination of thermodynamic integration and umbrella sampling modeling methods. A path that involves lowering the charge on E705 was chosen to clarify the role of this binding site residue. A continuum electrostatics approach in S1S2 is used to show E705, located in the ligand binding cleft, stabilizes the closed conformation of S1S2 via direct interactions with other protein residues, not through the ligand. In the closed conformation, in the absence of a ligand, S1S2 is somewhat more closed than what has been reported in X-ray structures. A semiopen conformation has been identified which is characterized by disruption of a single cross-cleft interaction and differs only slightly in energy from the fully closed S1S2. The fully open S1S2 conformation exhibits a wide energy well and shares structural similarity with the apo S1S2 crystal structure. Hybrid continuum electrostatics/MD calculations along the chosen closure transition pathway reveal solvation energies, and electrostatic interaction energies between two lobes of the protein increase the relative energetic difference between the open and closed conformational states. By analyzing the role of several cross-cleft contacts as well as other binding site residues, we demonstrate how S1S2 interactions facilitate formation of the closed conformation of the GluR2 ligand binding domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814871PMC
http://dx.doi.org/10.1021/bi801367dDOI Listing

Publication Analysis

Top Keywords

ligand binding
20
binding domain
16
closed conformation
12
s1s2
9
closure transition
8
binding site
8
ligand
7
binding
7
conformation
6
closed
6

Similar Publications

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.

View Article and Find Full Text PDF

Evaluation of predictions of disordered binding regions in the CAID2 experiment.

Comput Struct Biotechnol J

December 2024

Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.

A large portion of the Intrinsically Disordered Regions (IDRs) in protein sequences interact with proteins, nucleic acids, and other types of ligands. Correspondingly, dozens of sequence-based predictors of binding IDRs were developed. A recently completed second community-based Critical Assessments of protein Intrinsic Disorder prediction (CAID2) evaluated 32 predictors of binding IDRs.

View Article and Find Full Text PDF

The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!