Tumor cells do not constitutively exhibit invasive activity, but rather, can be transiently induced to adhere and form lesions. We report here that the expression of seprase, a dominant EDTA-resistant gelatinase in malignant tumors, is dependent on tumor cell exposure to type I collagen gel (TICg). The induced seprase expression of ovarian tumor cells influences their collagen contraction and invasion capability. Importantly, tumor cells with reduced seprase expression, due to manipulation by RNA interference, showed a reduction of TICg contraction in the gel contractility assay, inhibition of tumor cell invasion through TICg as shown by a transwell migration assay and inhibition of peritoneal membrane tumor lesion in a mouse model. In addition, mAb C27, an antibody against beta1 integrin, which blocks cellular avidity to TICg, can induce seprase RNA expression and promote the invasive phenotype and metastatic potential of ovarian tumor cells. Thus, collagenous matrices in the tumor cell niche induce the expression of seprase and initiate tumor invasion and metastatic cascades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597700PMC
http://dx.doi.org/10.1002/ijc.23871DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
seprase expression
12
ovarian tumor
12
tumor cell
12
tumor
10
invasive phenotype
8
collagenous matrices
8
expression seprase
8
assay inhibition
8
expression
6

Similar Publications

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.

View Article and Find Full Text PDF

Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions.

Am Soc Clin Oncol Educ Book

January 2025

Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.

Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited.

View Article and Find Full Text PDF

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by loss of function.

Sci Adv

January 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to gene mutations. Mice with deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!