The DNA ligase gene from thermophilic archaea of the genus Thermococcus (strain 1519) was identified and sequenced in the polymerase chain reaction. The recombinant enzyme LigTh1519 was expressed in Escherichia coli, purified, and characterized. LigTh1519 was capable of ligating the cohesive ends and single-strand breaks in double-stranded DNA (ATP as a cofactor). The optimum conditions for the ligase reaction appeared as follows: 100 mM NaCl, 50 mM MgCl2, pH 7.0-10.5, and temperature 70 degrees C. More than 50% Lig1519 activity were preserved after incubation of the enzyme at 80 degrees C for 30 min. New thermostable DNA ligase LihTh1519 may be used for basic and applied researches in molecular biology and genetic engineering.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna ligase
12
thermostable dna
8
archaea genus
8
[isolation characteristics
4
characteristics thermostable
4
dna
4
ligase
4
ligase archaea
4
genus thermococcus]
4
thermococcus] dna
4

Similar Publications

Comparison of Bacterial Intracellular and Secreted Proteins produced in Milk Versus Medium for Escherichia coli by Proteomic Analysis.

J Dairy Sci

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China. Electronic address:

The growth and reproduction of microorganisms are dependent on nutrient supply. Here, Milk and LB media were utilized as nutrition sources for Escherichia coli, and the changes in bacterial and secretory proteins at 3 time points (3, 9, and 18 h) in the growth cycle were studied using a label-free proteomics technique. The findings revealed that the abundances of bacterial intracellular proteins inosine/xanthosine triphosphatase and universal stress protein F increase dramatically during the growth phase in milk and LB media.

View Article and Find Full Text PDF

Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy.

Nat Commun

January 2025

Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.

UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells.

View Article and Find Full Text PDF

The p53 protein has attracted huge research interest over several decades due to its role as one of the most important tumor suppressors in mammals, which orchestrates a synchronous response from normal cells in the body to various forms of stress. The diverse cellular activities of the p53 protein are regulated mainly via its post-translational modifications (PTMs). PTMs affect p53 on several levels: at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes, at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes; at the level of proteolysis in the absence of stress; and on the contrary, at the level of augmented protein stability in response to stress signals.

View Article and Find Full Text PDF

Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!