Bioactive glass-ionomer cement with potential therapeutic function to dentin capping mineralization.

Eur J Oral Sci

Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.

Published: October 2008

We have developed a novel bioactive resin-modified glass-ionomer cement system with therapeutic function to dentin capping mineralization. In the system, the newly synthesized star-shape poly(acrylic acid) was formulated with water, Fuji II LC filler, and bioactive glass S53P4 to form resin-modified glass-ionomer cement. Compressive strength (CS) was used as a screening tool for evaluation. The commercial glass-ionomer cement Fuji II LC was used as a control. All the specimens were conditioned in simulated body fluid (SBF) at 37 degrees C prior to testing. The effect of aging in SBF on CS and microhardness of the cements was investigated. Scanning electron microscopy was used to examine the in vitro dentin surface changes caused by the incorporation of bioactive glass. The results show that the system not only provided strengths comparable to original commercial Fuji II LC cement but also allowed the cement to help mineralize the dentin in the presence of SBF. It appears that this bioactive glass-ionomer cement system has direct therapeutic impact on dental restorations that require root surface fillings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0722.2008.00562.xDOI Listing

Publication Analysis

Top Keywords

glass-ionomer cement
20
bioactive glass-ionomer
8
therapeutic function
8
function dentin
8
dentin capping
8
capping mineralization
8
resin-modified glass-ionomer
8
cement system
8
bioactive glass
8
cement
7

Similar Publications

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

Measurement of Fluoride Ion Release From Restorative Material Using an Ion-Selective Electrode and Ultraviolet-Visible Light Spectrophotometer.

J Int Soc Prev Community Dent

December 2024

Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.

Background: Importance of fluoride in dental restorative materials for preventing secondary caries. Several commercially available tooth-colored dental restorative materials, such as glass ionomer cement, resin composites, and compomers were used for this study.

Aim: To evaluate the amount of fluoride release from tooth-colored restorative materials [Conventional Glass Ionomer Cement (GC Fuji II)], Resin-modified Glass Ionomer Cement (ACTIVA BioACTIVE-RESTORATIVE), and Giomer (BEAUTIFIL II LS)] using ion-selective electrode (ISE) and spectrophotometer using zirconyl alizarin red dye method.

View Article and Find Full Text PDF

The Effect of Plaque Detectors on the Color Stability of Two Types of Restorative Materials.

J Esthet Restor Dent

January 2025

Department of Biomedical and Neuromotor Science (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.

Objective: To investigate the color stability of a one-shade resin-based composite material (RC) and a glass-ionomer cement (GIC) after staining with plaque detectors (PDs) with different formulations and delivery forms.

Materials And Methods: Rectangular-shaped specimens (7 × 3 × 2 mm) were produced with RC (Venus Diamond One, Kulzer) and GIC (Fujy IX GP, GC) (n = 30). Further, the following PDs were used on the specimens: (1) tablets (T; Plaq-Search, TePe); (2) mouthwash (M; Plaque Agent, Miradent); and (3) light-curing liquid (L; Plaque test, Ivoclar).

View Article and Find Full Text PDF

Evaluation of Biodentine® and Calcium Hydroxide in the Formation of Dentin Bridge in Deep Carious Lesions.

West Afr J Med

September 2024

.Department of Preventive Dentistry, Lagos State University, College of Medicine, Faculty of Dentistry, Ikeja, Lagos, PMB 21266, Nigeria.

Background: Indirect pulp capping is the main treatment modality for reversible pulpitis.

Objective: To evaluate the efficacy of Biodentine® and Calcium hydroxide in the formation of dentin bridge.

Materials And Methods: A double blinded, randomized clinical control trial involving 50 consenting subjects, aged 16 to 55 years with deep carious vital teeth.

View Article and Find Full Text PDF

Objectives: The aim of this in-vitro study was to evaluate the effects of antacid gastric syrups on the surface roughness and microhardness of restorative dental materials.

Materials And Methods: Three different composite resins, nanohybrid, microhybrid and giomer, and four antacid gastric syrups were used in the study. A total of 150 samples were obtained by preparing 50 (10 mm x 2 mm) disk-shaped samples of each composite type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!