Dehydration and procurement of water are key problems for vertebrates that have secondarily invaded marine environments. Sea snakes and other marine reptiles are thought to remain in water balance without consuming freshwater, owing to the ability of extrarenal salt glands to excrete excess salts obtained either from prey or from drinking seawater directly. Contrary to this long-standing dogma, we report that three species of sea snake actually dehydrate in marine environments. We investigated dehydration and drinking behaviors in three species of amphibious sea kraits (Laticauda spp.) representing a range of habits from semiterrestrial to very highly marine. Snakes that we dehydrated either in air or in seawater refused to drink seawater but drank freshwater or very dilute brackish water (10%-30% seawater) to remain in water balance. We further show that Laticauda spp. can dehydrate severely in the wild and are far more abundant at sites where there are sources of freshwater. A more global examination of all sea snakes demonstrates that species richness correlates positively with mean annual precipitation within the Indo-West Pacific tropical region. The dependence of Laticauda spp. on freshwater might explain the characteristically patchy distributions of these reptiles and is relevant to understanding patterns of extinctions and possible future responses to changes in precipitation related to global warming. In particular, metapopulation dynamics of the Laticauda group of sea snakes are expected to change in relation to projected reductions of tropical dry-season precipitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/588306 | DOI Listing |
Trans R Soc Trop Med Hyg
January 2025
Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608502, India.
Background: Snakebite envenoming is a critical medical emergency and significant global public health issue, with India experiencing the highest annual snakebite deaths. Sea snakes in the Indian Ocean pose a severe threat to rural fishermen due to their potent neurotoxins.
Methods: From December 2020 to December 2021, we conducted surveys at 15 fishing ports in East Medinipur, West Bengal, and Balasore, Odisha, India (between 21.
PLoS One
December 2024
Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico.
Mol Biol Evol
November 2024
Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
Mitochondrial DNA B Resour
October 2024
Institute of Marine Drugs, Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China.
PLoS One
October 2024
Department of the Environment of Iran, Provincial Office of Kerman, Kerman, Iran.
The events of the Cenozoic era such as mountain formation caused Iran to become one of the most amazing biodiversity hotspots in the world today. This pioneering study on Iranian snake biogeography integrates historical and ecological analyses. A phylogeographic review traces speciation and dispersal, while cluster analysis with a new snake checklist assesses faunistic similarities within Iran and its surroundings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!