Human embryonic and mesenchymal stem cells express different nuclear proteomes.

Stem Cells Dev

Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.

Published: June 2009

Human embryonic stem cells (hESCs) are characterized by their immortality and pluripotency. Human mesenchymal stem cells (hMSC), on the other hand, have limited self-renewal and differentiation capabilities. The underlying molecular differences that account for this characteristic self-renewal and plasticity are, however, poorly understood. This study reports a nuclear proteomic analysis of human embryonic and bone marrow-derived mesenchymal stem cells. Our proteomic screen highlighted a 5-fold difference in the expression of Reptin52. We show, using two-dimensional difference gel electrophoresis (2-DIGE), western analysis, and quantitative reverse transcriptase polymerase chain reaction, that Reptin52 is more abundantly expressed in hESC than hMSC. Moreover, we observed differential expression of Pontin52 and beta-catenin-proteins known to interact with Reptin52. This difference in the expression of Reptin52 and Pontin52 (known regulators of beta-catenin) further supports a role for Wnt signaling in stem cell self-renewal and proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2008.0156DOI Listing

Publication Analysis

Top Keywords

stem cells
16
human embryonic
12
mesenchymal stem
12
difference expression
8
expression reptin52
8
stem
5
human
4
embryonic mesenchymal
4
cells
4
cells express
4

Similar Publications

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).

Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!