Infection of primary canine duodenal epithelial cell cultures with Neospora caninum.

J Parasitol

Institute of Parasitology and Department of Clinical Veterinary Medicine, Division of Small Animal Internal Medicine, Vetsuisse Faculty of the University of Berne, Berne, Switzerland.

Published: April 2009

According to current knowledge, sexual development of the apicomplexan parasite Neospora caninum takes place in the canine intestine. However, to date there is no information on the interaction between the parasite and the canine intestinal epithelium, and, next to the clinical and in vivo research tools, an in vitro model comprised of canine intestinal cells infected with N. caninum would be very helpful for investigations at the cellular level. Following the isolation of cells of neonatal canine duodenum and growth of cell cultures to monolayers for 5-6 days, canine intestinal epithelial cells were exposed to cell culture-derived N. caninum tachyzoites and bradyzoites. The host cells remained viable during in vitro culture for an average of 2 wk. During this time span, N. caninum was found to readily adhere to any surface area of these cells, but infection took mostly place at sites where microvilli-like structures were missing, e.g., at the cell periphery, with tachyzoites exhibiting at least 3-4 times increased invasive capacities compared to bradyzoites. Once intracellular, parasites resided within a parasitophorous vacuole, moved toward the vicinity of the nucleus and the more distal portion of the epithelial cells, and proliferated to form vacuoles of not more than 2-4 parasites, which were surrounded by numerous mitochondria. Immunofluorescence staining and TEM of infected cells showed that the expression of cytokeratins and the structural integrity of desmosomes and tight junctions were not notably altered during infection. Furthermore, no changes could be detected in the alkaline phosphatase activities in cell culture supernatants of infected and noninfected cells. Canine duodenal epithelial cell cultures represent a useful tool for future studies on the characteristics of the intestinal phases of N. caninum infection.

Download full-text PDF

Source
http://dx.doi.org/10.1645/GE-1812.1DOI Listing

Publication Analysis

Top Keywords

cell cultures
12
canine intestinal
12
canine duodenal
8
duodenal epithelial
8
epithelial cell
8
neospora caninum
8
cells
8
epithelial cells
8
canine
7
cell
6

Similar Publications

Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil.

In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized.

View Article and Find Full Text PDF

Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis.

J Cachexia Sarcopenia Muscle

February 2025

Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.

Background: Regenerative capacity of skeletal muscles decreases with age. Deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) is associated with skeletal muscle weakness as well as epithelial cell senescence. However, whether and how CFTR plays a role in skeletal muscle regeneration and aging were unclear.

View Article and Find Full Text PDF

Osteoblast-Derived Mitochondria Formulated with Cationic Liposome Guide Mesenchymal Stem Cells into Osteogenic Differentiation.

Adv Sci (Weinh)

January 2025

School of Bioconvergence, CHA University, 6F, CHA Biocomplex, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.

While mitochondria are known to be essential for intracellular energy production and overall function, emerging evidence highlights their role in influencing cell behavior through mitochondrial transfer. This phenomenon provides a potential basis for the development of treatment strategies for tissue damage and degeneration. This study aims to evaluate whether mitochondria isolated from osteoblasts can promote osteogenic differentiation in mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

Pericytes Promote More Vascularization than Stromal Cells via an Interleukin-6-Dependent Mechanism in Microfluidic Chips.

Adv Sci (Weinh)

January 2025

Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstrasse 55, 52074, Aachen, Germany.

Pericytes are a key player in vascularization, protecting endothelial cells from external harm and promoting the formation of new vessels when necessary. However, pericytic identity and its relationship with other cell types, such as mesenchymal stromal/stem cells, is highly debated. This study compares the role of pericytes and unselected stromal cells in vascularization using multichannel microfluidic chips.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!