Lentiviral integration preferences in transgenic mice.

Genesis

Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA.

Published: December 2008

Lentiviral gene transfer has a significant impact on the development of biomedical research. One of the most important features of lentiviruses is the capability to infect both dividing and nondividing cells. However, little is known whether integration preference exists, specifically in early embryos. An in-depth genome analysis on 112 independent lentiviral integration sites from 43 transgenic founder mice was performed to determine if there are preferable sites for lentiviral integration in early embryonic genome. Our results demonstrated that lentiviruses were biased in integrating within intragenic regions, especially in the introns. However, no integration preference was found associated with specific chromosomes, repetitive elements, or CpG islands, nor was there any preference for integrating at close proximity to transcription start sites. Our findings suggested that lentiviruses were biased to integrate into the intragenic regions of early embryonic genome of mouse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381762PMC
http://dx.doi.org/10.1002/dvg.20435DOI Listing

Publication Analysis

Top Keywords

lentiviral integration
12
integration preference
8
early embryonic
8
embryonic genome
8
lentiviruses biased
8
intragenic regions
8
lentiviral
4
integration preferences
4
preferences transgenic
4
transgenic mice
4

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Enhanced Wound Healing and Autogenesis Through Lentiviral Transfection of Adipose-Derived Stem Cells Combined with Dermal Substitute.

Biomedicines

December 2024

Department of Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.

Background: Burns and chronic ulcers may cause severe skin loss, leading to critical health issues like shock, infection, sepsis, and multiple organ failure. Effective healing of full-thickness wounds may be challenging, with traditional methods facing limitations due to tissue shortage, infection, and lack of structural support.

Methods: This study explored the combined use of gene transfection and dermal substitutes to improve wound healing.

View Article and Find Full Text PDF

Single-Cell Lineage Tracing and Clonal State-Fate Analysis.

Methods Mol Biol

January 2025

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.

Lineage tracing has significantly advanced our comprehension in many areas of biology, such as development or immunity, by precisely measuring cellular processes like migration, division, or differentiation across labeled cells and their progeny. Traditional recombinase-based prospective lineage tracing is limited by the need for a priori cell type information and is constrained in the numbers of clones it can simultaneously track. In this sense, clonal lineage tracing with integrated random barcodes offers a robust alternative, enabling researchers to label and track a vast array of cells and their progeny over time.

View Article and Find Full Text PDF

Comparative RNA sequencing analysis of three Capripoxvirus infections in an immortalized hTERT-bOEC cell model.

Virology

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China. Electronic address:

Capripoxviruses (CaPVs), such as lumpy skin disease, sheep pox, and goat pox, cause significant production and economic losses and are major constraints to the growth of livestock production in endemic areas. Understanding the pathogenic mechanism of CaPVs and their translation into clinical applications depends on the availability of a suitable cell line. In this study, we used a lentiviral packaging system to establish an immortalized hTERT-bOEC cell line by ectopic introduction of human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

Recently approved adeno-associated viral (AAV) vectors for liver monogenic diseases haemophilia A and B are exemplifying the success of liver-directed viral gene therapy. In parallel, additional gene therapy strategies are rapidly emerging to overcome some inherent AAV limitations, such as the non-persistence of the episomal transgene in the rapidly growing liver and immune response. Viral integrating vectors such as in vivo lentiviral gene therapy and non-viral vectors such as lipid nanoparticles encapsulating mRNA (LNP-mRNA) are rapidly being developed, currently at the preclinical and clinical stages, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!