A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Speech technology-based assessment of phoneme intelligibility in dysarthria. | LitMetric

Background: Currently, clinicians mainly rely on perceptual judgements to assess intelligibility of dysarthric speech. Although often highly reliable, this procedure is subjective with a lot of intrinsic variables. Therefore, certain benefits can be expected from a speech technology-based intelligibility assessment. Previous attempts to develop an automated intelligibility assessment mainly relied on automatic speech recognition (ASR) systems that were trained to recognize the speech of persons without known impairments. In this paper automatic speech alignment (ASA) systems are used instead. In addition, previous attempts only made use of phonemic features (PMF). However, since articulation is an important contributing factor to intelligibility of dysarthric speech and since phonological features (PLF) are shared by multiple phonemes, phonological features may be more appropriate to characterize and identify dysarthric phonemes.

Aims: To investigate the reliability of objective phoneme intelligibility scores obtained by three types of intelligibility models: models using only phonemic features (yielded by an automated speech aligner) (PMF models), models using only phonological features (PLF models), and models using a combination of phonemic and phonological features (PMF + PLF models).

Methods & Procedures: Correlations were calculated between the objective phoneme intelligibility scores of 60 dysarthric speakers and the corresponding perceptual phoneme intelligibility scores obtained by a standardized perceptual phoneme intelligibility assessment.

Outcomes & Results: The correlations between the objective and perceptual intelligibility scores range from 0.793 for the PMF models, over 0.828 for PLF models to 0.943 for PMF + PLF models. The features selected to obtain such high correlations can be divided into six main subgroups: (1) vowel-related phonemic and phonological features, (2) lateral-related features, (3) silence-related features, (4) fricative-related features, (5) velar-related features and (6) plosive-related features.

Conclusions & Implications: The phoneme intelligibility scores of dysarthric speakers obtained by the three investigated intelligibility model types are reliable. The highest correlation between the perceptual and objective intelligibility scores was found for models combining phonemic and phonological features. The intelligibility scoring system is now ready to be implemented in a clinical tool.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13682820802342062DOI Listing

Publication Analysis

Top Keywords

phoneme intelligibility
24
phonological features
24
intelligibility scores
24
intelligibility
15
features
13
models models
12
plf models
12
phonemic phonological
12
models
10
speech
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!