Drug dosing is commonly based on the dogma that, increasing the dose maximizes the therapeutic response until a dose level that is prohibitively toxic is reached. This doctrine also applies to antibody therapy, as several protocols have explored dose escalation. We have analyzed the effect of different amounts of a homophilic Herceptin targeting a human lung tumor cell line, and discovered that the normal dose-potency relationship does not apply. To study this paradoxical effect of antibody concentration on potency, we examined the molecular species of the homophilic Herceptin under different concentrations using size exclusion chromatography and gel electrophoresis. We also varied experimental conditions in FACS tumor targeting, such as concentration of antibody, membrane immobilization, temperature, and antibody homo/dimer immobilization. We observed that high concentrations of homophilic Herceptin reduce targeting, and also noted the tumor growth arrest in the xenograft mice after the tumor reached a critical size. The therapeutic window appears to be defined by tumor size and antibody concentration. Since the concentration of this homophilic antibody defines the optimum targeting window, our data suggest the therapeutic dose of antibody should be matched with the tumor burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030070PMC
http://dx.doi.org/10.1007/s00262-008-0597-zDOI Listing

Publication Analysis

Top Keywords

homophilic herceptin
12
antibody
8
antibody concentration
8
tumor
6
paradoxical concentration
4
concentration homodimerizing
4
homodimerizing antibody
4
antibody human
4
human non-small
4
non-small cell
4

Similar Publications

Germline mutations in CDH1, the gene coding for the E-cadherin adhesion protein, are known to cause hereditary diffuse gastric cancer. We identified a new truncating germline mutation (p.Asp538Thrfs*19) in exon 11 of the CDH1 gene in a 41-year-old male with a diffuse gastric cancer.

View Article and Find Full Text PDF

Physical and biological properties of homophilic therapeutic antibodies.

Cancer Immunol Immunother

April 2011

Department of Microbiology and Immunology, Markey Cancer Center, University of Kentucky, 124A Combs Building, 800 Rose St., Lexington, KY 40536, USA.

Homophilic antibodies have been discovered in mice and primates and can also be engineered. Compared to conventional antibodies, homophilic antibodies form lattices on targets leading to enhanced binding via polyvalent attachment. Previously, we have observed a paradoxical dose/potency effect with an engineered homophilic antibody against a human lung cancer tumor.

View Article and Find Full Text PDF

Drug dosing is commonly based on the dogma that, increasing the dose maximizes the therapeutic response until a dose level that is prohibitively toxic is reached. This doctrine also applies to antibody therapy, as several protocols have explored dose escalation. We have analyzed the effect of different amounts of a homophilic Herceptin targeting a human lung tumor cell line, and discovered that the normal dose-potency relationship does not apply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!