Genetic control of rice plant architecture under domestication.

Nat Genet

National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.

Published: November 2008

The closely related wild rice species Oryza rufipogon is considered the progenitor of cultivated rice (Oryza sativa). The transition from the characteristic plant architecture of wild rice to that of cultivated rice was one of the most important events in rice domestication; however, the molecular basis of this key domestication transition has not been elucidated. Here we show that the PROG1 gene controls aspects of wild-rice plant architecture, including tiller angle and number of tillers. The gene encodes a newly identified zinc-finger nuclear transcription factor with transcriptional activity and is mapped on chromosome 7. PROG1 is predominantly expressed in the axillary meristems, the site of tiller bud formation. Rice transformation experiments demonstrate that artificial selection of an amino acid substitution in the PROG1 protein during domestication led to the transition from the plant architecture of wild rice to that of domesticated rice.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.247DOI Listing

Publication Analysis

Top Keywords

plant architecture
16
wild rice
12
rice
9
cultivated rice
8
architecture wild
8
genetic control
4
control rice
4
plant
4
rice plant
4
architecture
4

Similar Publications

Indian agriculture is vital sector in the country's economy, providing employment and sustenance to millions of farmers. However, Plant diseases are a serious risk to crop yields and farmers' livelihoods. Traditional plant disease diagnosis methods rely heavily on human expertise, which can lead to inaccuracies due to the invisible nature of early disease symptoms and the labor-intensive process, making them inefficient for large-scale agricultural management.

View Article and Find Full Text PDF

LG1 promotes preligule band formation through directly activating ZmPIN1 genes in maize.

J Genet Genomics

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Increasing plant density is an effective strategy for enhancing crop yield per unit land area. A key architectural trait for crops adapting to high planting density is smaller leaf angle (LA). Previous studies have demonstrated that LG1, a SQUAMOSA BINDING PROTEIN (SBP) transcription factor, plays a critical role in LA establishment.

View Article and Find Full Text PDF

Biofilm formation by the plant growth promoting bacterium Bacillus cereus (EB-40).

Braz J Microbiol

January 2025

Programa de Pós-Graduação em Produção Vegetal no Semiárido, Universidade Estadual de Montes Claros, Rua Reinaldo Viana, 2650, Janaúba, MG, 39400-000, Brazil.

The objective of this work was to investigate the biofilm production capacity of the isolate EB-40 (Bacillus cereus) in a culture medium for the multiplication of microorganisms and in roots of in vitro grown banana explants. It was observed that the isolate was able to produce biofilms in tryptone, soy and agar (TSA) culture medium and in the roots of explants. The format, architecture and location of the biofilms in TSA culture medium presented an exopolymer matrix formed by EB-40 presented coccoid bacillary cells and fibrillar structures.

View Article and Find Full Text PDF

Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers.

Nat Plants

January 2025

State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.

Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species.

View Article and Find Full Text PDF

The Chinese government attaches great importance to the ecological restoration of abandoned open-pit mines, increasing the area of cultivated land, and ensuring food security. Soil reconstruction is a crucial step in ecological restoration of abandoned open-pit mines. This study investigated the utilization of hydrophobic sand to create an Air-Permeable Aquiclude (APAC) under the plant root zones, thereby minimizing water infiltration and enhancing soil aeration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!