Succinate acts as an extracellular mediator signaling through the G protein-coupled receptor GPR91. Here we show that dendritic cells had high expression of GPR91. In these cells, succinate triggered intracellular calcium mobilization, induced migratory responses and acted in synergy with Toll-like receptor ligands for the production of proinflammatory cytokines. Succinate also enhanced antigen-specific activation of human and mouse helper T cells. GPR91-deficient mice had less migration of Langerhans cells to draining lymph nodes and impaired tetanus toxoid-specific recall T cell responses. Furthermore, GPR91-deficient allografts elicited weaker transplant rejection than did the corresponding grafts from wild-type mice. Our results suggest that the succinate receptor GPR91 is involved in sensing immunological danger, which establishes a link between immunity and a metabolite of cellular respiration.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.1657DOI Listing

Publication Analysis

Top Keywords

receptor gpr91
12
succinate receptor
8
gpr91 dendritic
8
dendritic cells
8
cells
5
triggering succinate
4
receptor
4
gpr91
4
cells enhances
4
enhances immunity
4

Similar Publications

Succinate Regulates Exercise-Induced Muscle Remodelling by Boosting Satellite Cell Differentiation Through Succinate Receptor 1.

J Cachexia Sarcopenia Muscle

February 2025

Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.

View Article and Find Full Text PDF

G protein-coupled receptor 91 promotes the inflammatory response to in bone marrow-derived macrophages.

Heliyon

July 2024

Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.

Macrophages are important for maintaining tissue homeostasis and defending against pathogens in periodontal tissues. However, these tissues are often vulnerable to damage due to local inflammatory responses within the host tissues. This study aimed to investigate the role of G protein-coupled receptor 91(GPR91) during the inflammatory response to () in bone marrow-derived macrophages (BMDMs).

View Article and Find Full Text PDF

G protein-coupled receptor 91 activations suppressed mineralization in Porphyromonas gingivalis-infected osteoblasts.

Sci Rep

November 2024

Department of Periodontics, Nanjing Stomatological Hospital, Affiliated Hosptital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, People's Republic of China.

Succinate receptor GPR91 is one of the G protein-coupled receptors (GPCRs) that interacts with various proteins to regulate diverse cellular functions such as cell morphology, apoptosis, and differentiation. In this study, we investigated whether the GPR91-mediated signaling pathway regulates mineralization in Porphyromonas gingivalis (P. gingivalis)-treated osteoblasts and to determine its potential role in osteoclast differentiation.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is believed to be associated with a notable disruption of cellular energy metabolism. By detecting the changes of energy metabolites in the serum of patients with pulmonary fibrosis, we aimed to investigate the diagnostic and prognostic value of energy metabolites in IPF, and further elucidated the mechanism of their involvement in pulmonary fibrosis. Through metabolomics research, it was discovered that the TCA cycle intermediates changed dramatically in IPF patients.

View Article and Find Full Text PDF

Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review.

Eur J Pharmacol

September 2024

Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!