Dedifferentiation of hepatocellular carcinoma implies aggressive clinical behavior and is associated with an increasing number of genomic alterations, eg deletion of 13q. Genes directly or indirectly deregulated due to these genomic alterations are mainly unknown. Therefore this study compares array comparative genomic hybridization and whole genome gene expression data of 23 well, moderately, or poorly dedifferentiated hepatocellular carcinoma, using unsupervised hierarchical clustering. Dedifferentiated carcinoma clearly branched off from well and moderately differentiated carcinoma (P<0.001 chi(2)-test). Within the dedifferentiated group, 827 genes were upregulated and 33 genes were downregulated. Significance analysis of microarrays for hepatocellular carcinoma with and without deletion of 13q did not display deregulation of any gene located in the deleted region. However, 531 significantly upregulated genes were identified in these cases. A total of 6 genes (BIC, CPNE1, RBPMS, RFC4, RPSA, TOP2A) were among the 20 most significantly upregulated genes both in dedifferentiated carcinoma and in carcinoma with loss of 13q. These genes are involved in cell-cycle control and proliferation. Of 33 downregulated genes in the dedifferentiated subgroup, 4 metallothioneins had the lowest fold change, most probably mediated through inactivation of C/EBPalpha by the PI3K/AKT cascade. In conclusion dedifferentiation of hepatocellular carcinoma is associated with upregulation of genes involved in cell-cycle control and proliferation. Notably, a significant portion of these genes is also upregulated in carcinoma with deletion of 13q. As no downregulated genes were identified and microRNAs (mir-621, mir-16-1, mir-15a) are located within the deleted region of 13q and may be lost, we speculate that these miRNAs may induce the upregulation of critical cell-cycle control genes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/modpathol.2008.147DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
12
dedifferentiated hepatocellular
8
genomic alterations
8
well moderately
8
carcinoma
5
loss 13q
4
13q associated
4
associated genes
4
genes involved
4
involved cell
4

Similar Publications

Hepatitis C virus (HCV) infection is a significant risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). Traditionally, the primary prevention strategy for HCV-associated HCC has focused on removing infection through antiviral regimes. Currently, highly effective direct-acting antivirals (DAAs) offer extraordinary success across all patient categories, including cirrhotics.

View Article and Find Full Text PDF

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Epigenetic Drift Is Involved in the Efficacy of HBV Vaccination.

Vaccines (Basel)

November 2024

Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy.

: HBV infections can lead to serious liver complications that can have fatal consequences. In 2022, around 1.1 million individuals died from HBV-related cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination.

Sensors (Basel)

December 2024

Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!