AI Article Synopsis

  • PhiSG-JL2 is a newly identified bacteriophage that specifically infects Salmonella enterica serovar Gallinarum biovar Gallinarum, while being nonlytic to certain vaccine and other Salmonella strains.
  • Its genome is 38,815 base pairs long with 55 potential genes, and shows high similarity to yersiniophage phiYeO3-12, classifying it as a new T7-like virus.
  • Pre-treating chickens with phiSG-JL2 before exposure to the wild-type strain helps protect them from fowl typhoid, indicating potential use in disease prevention and differentiation of Salmonella strains.

Article Abstract

PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583507PMC
http://dx.doi.org/10.1128/AEM.01088-08DOI Listing

Publication Analysis

Top Keywords

serovar gallinarum
28
gallinarum biovar
28
biovar gallinarum
24
enterica serovar
20
gallinarum
13
serovar
9
lytic bacteriophage
8
salmonella enterica
8
fowl typhoid
8
biovar
7

Similar Publications

An enzyme-activated loop primer probe LAMP method based on a new SNP site in the group_17537 gene for rapid on-site detection of Salmonella Pullorum.

Poult Sci

January 2025

National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Pullorum disease (PD) is a widespread disease that causes significant economic losses within the poultry industry of developing countries. An effective strategy for its prevention and control involves the implementation of decontamination procedures utilizing highly specific on-site detection techniques. In this study, a single-nucleotide polymorphism (SNP) site within the group_17537 gene of Salmonella enterica serovar Gallinarum biovars Pullorum (S.

View Article and Find Full Text PDF

Efficient differentiation between Pullorum and Gallinarum by a -based PCR-HRM.

Avian Pathol

January 2025

Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, People's Republic of China.

Pullorum (. Pullorum) and Gallinarum (. Gallinarum) are the biovars of serovar Gallinarum that are responsible for pullorum disease and fowl typhoid in poultry, respectively.

View Article and Find Full Text PDF

Due to consumer demand, many conventional poultry farms are now growing poultry without antibiotics or synthetic chemicals. In addition to this, pasture/organic poultry farms have increased significantly in the USA, and they are also antibiotic- and chemical-free. According to recent reports, both antibiotic-free conventional and pasture poultry farmers are facing the re-emergence of bacterial diseases.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a product consisting of four bacteriophages infecting ser. Gallinarum B/00111, intended for be as a zootechnical additive (functional group: other zootechnical additives) for all poultry species. Bafasal® is proposed for use in water for drinking and liquid complementary feed to guarantee a minimum daily dose of 2 × 10 PFU/bird, to reduce the spp.

View Article and Find Full Text PDF

This study involves the development and molecular characterization of the isogenic markerless knockout mutant SG Δ, a genetically engineered live attenuated strain aimed at controlling Gallinarum (SG) infection in poultry. The mutant was generated by deleting the gene using -Red recombination technology, impairing adenylosuccinate lyase, necessary for purine biosynthesis. An 1,180 bp deletion was engineered within the gene, leaving a residual 298 bp genomic scar resulting in a purine auxotrophic mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!