MreB, the homolog of eukaryotic actin, may play a vital role when prokaryotes cope with stress by altering their spatial organization, including their morphology, subcellular architecture, and localization of macromolecules. This study investigates the behavior of MreB in Vibrio parahaemolyticus under various stresses. The behavior of MreB was probed using a yellow fluorescent protein-MreB conjugate in merodiploid strain SC9. Under normal growth conditions, MreB formed helical filaments in exponential-phase cells. The shape of starved or stationary-phase cells changed from rods to small spheroids. The cells differentiated into the viable but nonculturable (VBNC) state with small spherical cells via a "swelling-waning" process. In all cases, drastic remodeling of the MreB cytoskeleton was observed. MreB helices typically were loosened and fragmented into short filaments, arcs, and spots in bacteria under these stresses. The disintegrated MreB exhibited a strong tendency to attach to the cytoplasmic membrane. The expression of mreB generally declined in bacteria in the stationary phase and under starvation but was upregulated during the initial periods of cold shock and VBNC state differentiation and decreased afterwards. Our findings demonstrated the behavior of MreB in the morphological changes of V. parahaemolyticus under intrinsic or extrinsic stresses and may have important implications for studying the cellular stress response and aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583491 | PMC |
http://dx.doi.org/10.1128/AEM.01020-08 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.
Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.
Unlabelled: Understanding the mechanisms that dictate the localization of cytoskeletal filaments is crucial for elucidating cell shape regulation in prokaryotes. The actin homolog MreB plays a pivotal role in maintaining the shape of many rod-shaped bacteria such as by directing cell-wall synthesis according to local curvature cues. However, the basis of MreB's curvature-dependent localization has remained elusive.
View Article and Find Full Text PDFMicroorganisms
June 2024
Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.
The circumferential motion of MreB filaments plays a key role in cell shape maintenance in many bacteria. It has recently been shown that filament formation of MreB filaments in is influenced by stress conditions. In response to osmotic upshift, MreB molecules were released from filaments, as seen by an increase in freely diffusive molecules, and the peptidoglycan synthesis pattern became less organized, concomitant with slowed-down cell extension.
View Article and Find Full Text PDFFront Microbiol
June 2024
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan.
Methods Mol Biol
November 2023
Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
The cell division machinery or "divisome" of many bacteria, including Escherichia coli, contains homologs of tubulin (FtsZ) and actin (FtsA) that interact with each other to promote the synthesis of septal peptidoglycan. FtsA oligomers have an essential role as a track for tethering dynamically treadmilling FtsZ protofilaments to the cytoplasmic membrane. Other bacterial cytoskeletal oligomers such as MreB also assemble on and move along the membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!