The thioredoxin system: a key target in tumour and endothelial cells.

Br J Radiol

Department of Clinical Oncology, Nottingham University Hospitals, City Hospital Campus, Hucknall Road, Nottingham NG5 1PB, UK.

Published: October 2008

Thioredoxin is a redox-sensitive molecule that has pleiotropic cellular effects, such as the control of proliferation, redox states and apoptosis, and is often upregulated in malignancy. The system controls the activation of a number of transcription factors through sulphydryl transfer and, through its activity on hypoxia inducible factor 1alpha, it is able to regulate vascular endothelial growth factor levels and hence angiogenesis. The thioredoxin protein has been shown to be upregulated in hypoxic regions of certain tumours, suggesting that inhibitors could potentially exhibit enhanced hypoxic toxicity and/or indirect anti-angiogenic effects. Evidence of this is becoming apparent in the literature. The current report reviews the thioredoxin system as an anticancer drug target and focuses upon two recent compounds, PMX464 and PX12, which reportedly inhibit this important pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1259/bjr/34180435DOI Listing

Publication Analysis

Top Keywords

thioredoxin system
8
thioredoxin
4
system key
4
key target
4
target tumour
4
tumour endothelial
4
endothelial cells
4
cells thioredoxin
4
thioredoxin redox-sensitive
4
redox-sensitive molecule
4

Similar Publications

The oxidative modification of specific cysteine residues to persulfides is thought to be the main way by which hydrogen sulfide (HS) exerts its biological and signaling functions. Therefore, protein persulfidation represents an important thiol-switching mechanism as other reversible redox post-translational modifications. Considering their reductase activity but also their connections with proteins that generate HS and its related molecules, the glutaredoxin (GRX) and thioredoxin (TRX)-reducing systems have potential dual roles in both protein persulfidation and depersulfidation.

View Article and Find Full Text PDF

Background: Oxidative damage has been implicated in multiple neurodegenerative diseases, including epilepsy. Selenium, in the form of selenoproteins is an integral part of the human antioxidant defense system. Though a relationship between the altered selenium levels and epilepsy has been reported, limited evidence is available about the expression pattern of selenoproteins in epileptic patients.

View Article and Find Full Text PDF

The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling.

Free Radic Biol Med

January 2025

Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.

View Article and Find Full Text PDF

Redox proteomics reveal a role for peroxiredoxinylation in stress protection.

Cell Rep

January 2025

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:

The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.

View Article and Find Full Text PDF

Variable lymphocyte receptors (VLRs) are the antigen receptors of jawless vertebrates such as lamprey. VLRs are of growing biotechnological interest for their ability to bind certain antigenic targets with higher affinity than traditional immunoglobulins. However, VLRs are disulfide-bonded proteins that are often challenging to produce requiring genetic modifications, fusion partners, non-scalable host cell lines or inclusion body formation and refolding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!